Advertisement

Pressure-Induced Electronic Transition in CeAl2

  • C. Probst
  • J. Wittig

Abstract

The room-temperature resistance of CeAl2 passes through a faint maximum around 60 kBar and falls off at higher pressure. Strong anomalies were previously reported for the temperature-dependence of the resistivity under pressure up to 15 kBar by Nicolas-Francillon et al. It has been found that these anomalies gradually disappear with even higher pressures. They are entirely suppressed at pressures exceeding ≃120 kBar resulting in a R-T characteristic being very similar to that of the nonmagnetic compound LaAl2. There is a striking similarity to the R vs. T behavior of pure cerium in the β or γ phase on the one hand and in the a phase on the other hand. We conclude that CeAl2 undergoes a continuous electronic transition with pressure just as Ce above the critical point.

Keywords

Phonon Contribution Pure Cerium Strong Anomaly Lave Phase Compound Shallow Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Probst and J. Wittig, in Handbook on the Physics and Chemistry of Rare Earths, edited by K.A. Gschneidner, Jr. and L. Eyring, (North-Holland Publ. Comp., Amsterdam), Chapter 10, in print.Google Scholar
  2. 2.
    H.H. Hill, in Plutonium 1970 and Other Actinides, editor W.N. Miner, (New York:AIME), p.2, 1970.Google Scholar
  3. 3.
    P. Burgardt, K.A. Gschneidner, Jr., D.C. Koskenmaki, D.K. Finnemore, J.O. Moorman, S. Legvold, C. Stassis, T.A. Vyrostek, Phys. Rev.B., 14, 2995, (1976).CrossRefGoogle Scholar
  4. 4.
    D.C. Koskimaki and K.A. Gschneidner Jr., Phys. Rev. B 11, 4463, (1975).CrossRefGoogle Scholar
  5. 5.
    C. Probst and J. Wittig, Proc. 14th Internat. Conf. on Low Temp. Phys., Otaniemi 1975, editors M. Krusius and M. Vuorio, (North-Holland Publ. Comp., Amsterdam), Vol. 5, p.453, (1975).Google Scholar
  6. 6.
    J. Wittig, Phys. Rev. Lett. 21, 1250, (1968).CrossRefGoogle Scholar
  7. 7.
    C. Probst and J. Wittig, to be published.Google Scholar
  8. 8.
    F.H. Ellinger and W.H. Zachariasen, Phys. Rev. Lett. 32, 773, (1974).CrossRefGoogle Scholar
  9. 9.
    E. Walker, H.-G. Purwins, M. Landolt, F. Hullinger, Jour. Less-Common Metals 33, 203, (1973).CrossRefGoogle Scholar
  10. 10.
    F. Steglich, Magnetic Moments of Rare Earth Ions in a Metallic Environment, in Festkörperproblerne — Advances in Solid State Physics, (Vieweg, Braunschweig), in print.Google Scholar
  11. 11.
    M. Croft, I. Zorić, J. Markovics and R. Parks, Proc. Int. Conf. on Valence Instabilities and Related Narrow Band Phenomena, Rochester, N.Y. (1976), in print.Google Scholar
  12. 12.
    A. Eichler and J. Wittig, Z. Angew, Physik 25, 319, (1968).Google Scholar
  13. 13.
    See also paper by J. Wittig and C. Probst, presented at this conference.Google Scholar
  14. 14.
    M. Nicolas-Francillon, A. Percheron, J.C. Achard, O. Gorochov, B. Cornut, D. Jerome and B. Coqblin, Solid State Commun. 11, 845, (1972).CrossRefGoogle Scholar
  15. 15.
    A. Jayaraman, Phys. Rev. 137, A179, (1965).CrossRefGoogle Scholar
  16. 16.
    M. Nicolas-Francillon and D. Jerome, Solid State Commun. 12, 523, (1973).CrossRefGoogle Scholar
  17. 17.
    K.A. Gschneidner Jr., P. Burgardt, S. Legvold, J.O. Moorman, T.A. Vyrostek and C. Stassis, J. Phys. F. 6, L49, (1976).CrossRefGoogle Scholar
  18. 18.
    S.H. Liu, P. Burgardt, K.A. Gschneidner Jr., S. Legvold, J. Phys. F. 6, L55, (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • C. Probst
    • 1
  • J. Wittig
    • 2
  1. 1.Zentralinstitut für TieftemperaturforschungBayerischen Akademie der WissenschaftenGarchingGermany
  2. 2.Institut für FestkörperforschungKernforschungsanlage JülichJülichWest-Germany

Personalised recommendations