Effects of Pressure, Temperature, and Defect Concentration on Positron Behavior in Metals

  • John D. McGervey


Positron lifetime distributions and the angular correlation of annihilation radiation are being used by numerous investigators to determine vacancy formation enthalpies and to reveal the presence of defects which may be precursors of voids in irradiated materials. However, the analysis that is needed to find vacancy formation energies is complicated by the presence of vacancy-independent temperature effects. These effects may be isolated by the application of sufficient pressure to remove the volume changes that result from increasing the temperature. For example, we find that the positron mean lifetime in cadmium at 296 K and 9.8 kb is 178 ± 2 ps, significantly larger than the lifetime of 170 ± 2 ps observed at 77 K and 0 kb, even though the volume of the sample is smaller in the former case, demonstrating that the effect of temperature is more than that of a simple volume change.


Angular Correlation Vacancy Formation Positron Lifetime Annihilation Radiation Positron Lifetime Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Brandt: In Positron Annihilation, Ed. by A.T. Steward and L.O. Roellig, (Academic Press, New York 1967) p. 180.Google Scholar
  2. 2.
    B. Bergersen, M.J. Stott: Solid State Commun. 7, 1203 (1969).CrossRefGoogle Scholar
  3. 3.
    D.C. Connors, R.N. West: Phys. Letters 30 A, 24 (1969).CrossRefGoogle Scholar
  4. 4.
    B.T.A. McKee, W. Triftshauser, A.T. Stewart: Phys. Rev. Letters 28, 358 (1972).CrossRefGoogle Scholar
  5. 5.
    A. Seeger: J. Phys. F (Metal Phys.) 3, 248 (1973).CrossRefGoogle Scholar
  6. 6.
    W. Triftshauser and J.D. McGervey: Appl. Phys. 6, 177 (1975).CrossRefGoogle Scholar
  7. 7.
    Bhattacharyya, P. and Singwi, K.S., Phys. Rev. Lett. 29, 22–5 (1972).CrossRefGoogle Scholar
  8. 8.
    West, R.N., Adv. Phys. 22, 263–383 (1973).CrossRefGoogle Scholar
  9. 9.
    Jamieson, H.C., McKee, B.T.A. and Stewart, A.T., Appl. Phys. 4, 79–82 (1974).CrossRefGoogle Scholar
  10. 10.
    Lichtenberger, P.C., Schulte, C.W. and MacKenzie, I.K., Appl. Phys. 6, 305–7 (1975).CrossRefGoogle Scholar
  11. 11.
    Seeger, A., Appl. Phys. 7, 85–92 (1975).CrossRefGoogle Scholar
  12. 12.
    Singh, K.P. and West, R.N., J. Phys. F.: Metal Phys. 6, L267–70 (1976).CrossRefGoogle Scholar
  13. 13.
    Smedskjaer, L.C., Fluss, M.J. Chason, M.K., Legnini, D.G. and Siegel, R.W., Proc. of the 4th Inter. Conf. on Positron Annihilation, Helsingor, C4, 10–1 (1976).Google Scholar
  14. 14.
    Stoll, H., Trost, W., Herlach, D., Maier, K., Metz, H. and Schaefer, H.E., Proc. of the 4th Inter. Conf. on Positron Annihilation, Helsingor, C6, 18–23 (1976).Google Scholar
  15. 15.
    McGervey, J.D., Vogel, J., Sen, P. and Knox, C., Nucl. Instr. Meth. 143, 435 (1977).CrossRefGoogle Scholar
  16. 16.
    Chu, C.W. and Testardi, L.R., Phys. Rev. Lett. 32, 766–9 (1974).CrossRefGoogle Scholar
  17. 17.
    Kirkegaard, P. and Eldrup, M., Comput. Phys. Coram. 3, 240–355 (1972).CrossRefGoogle Scholar
  18. 18.
    Perez-Albuerne, E.A. Clendenen, R.L., Lynch, R.W. and Drickamer, H.G., Phys. Rev. 142, 392–9 (1966).CrossRefGoogle Scholar
  19. 19.
    Kirby, R.K., Hahn, T.A. and Rotchrock, B.D., Amer. Inst. Phys. Handbook, 3rd Ed. McGraw-Hill Book Co. 4, 119–42 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • John D. McGervey
    • 1
  1. 1.Department of PhysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations