Advertisement

High Hydrogen Pressures in Superconductivity

  • B. Baranowski
  • T. Skoskiewicz

Abstract

The experimental conditions for the preparation of metallic hydrogen are not easily available. Therefore it is of interest to study the eventual metallic behaviour of hydrogen in the form of its alloys1 as these can be probably obtained in much less extremal conditions than the pure component. This means —first of all—a much smaller equilibrium pressure of hydrogen above such alloys than is the case for metallic hydrogen. Let us stress here the analogy to metallic mercury whose equilibrium pressure above amalgams can be by orders of magnitude smaller than above the pure component. It is obvious that the higher the thermodynamic activity of hydrogen the closer the approach to its eventual metallic behaviour.

Keywords

Critical Temperature Hydrogen Concentration Isotope Effect Metal Hydride Nickel Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Baranowski, T. Skośkiewicz, A.W. Szafrański, Fiz. Niz. Temp., 1, (1975), 616.Google Scholar
  2. 2.
    B. Baranowski, K. Bocheńska, S. Majchrzak, Roczn. Chem., 41, (1967), 2071.Google Scholar
  3. 3.
    B. Baranowski, K. Bojarski, Roczn- Chem. 46, (1972), 525.Google Scholar
  4. 4.
    M. Krukowski, B. Baranowski, Roczn. Chem., 49, (1975), 1183.Google Scholar
  5. 5.
    N.W. Ashcroft, Phys. Rev. Lett., 21, (1968), 1748.CrossRefGoogle Scholar
  6. 6.
    C.B. Satterthwaite, I.L. Toepke, Phys. Rev. Letters 25, (1970), 741.CrossRefGoogle Scholar
  7. 7.
    T. Skośkiewicz, Phys. Status Solidi (a) 11, (1972), K123.CrossRefGoogle Scholar
  8. 8.
    R.J. Miller, C.B. Satterthwaite, Phys. Rev. Lett., 34, (1975), 144.CrossRefGoogle Scholar
  9. 9.
    J.M. Harper, Phys. Letters, 47A, (1974), 69.Google Scholar
  10. 10.
    D.S. Mac-Lachlan, T.B. Doyle, J.P. Burger, Proc. XIV-th Int. Conf. Low Temp. Phys. Otaniemi 1975, Vol. 2, p. 44.Google Scholar
  11. 11.
    B. Stritzker, W. Buckel, Z. Phys. 257, (1972), 1.CrossRefGoogle Scholar
  12. 12.
    B. Stritzker, Z. Phys. 268, (1974), 261.CrossRefGoogle Scholar
  13. 13.
    L. Sansores, R.E. Glover, Bull. Am. Phys. Soc., 19, (1974), 437.Google Scholar
  14. 14.
    P.I. Silverman, C.V. Briscoe, Phys. Letters, 53A, (1975), 221.Google Scholar
  15. 15.
    T. Skośkiewicz, Phys. Stat. Sol. (b), 59, (1973), 329.CrossRefGoogle Scholar
  16. 16.
    B. Baranowski, W. Bujnowski, Roczn. Chem., 44, (1970), 2271.Google Scholar
  17. 17.
    T. Skośkiewicz, A.W. Szafranski, W. Bujnowski, B. Baranowski, J. Phys. C: Solid State Phys., 7, (1974), 2670.CrossRefGoogle Scholar
  18. 18.
    J.E. Schirber, Phys. Letters 45A, (1973), 141.Google Scholar
  19. 19.
    J.E. Schirber, Phys. Rev. B 10, (1974), 3818.CrossRefGoogle Scholar
  20. 20.
    J. Igalson, et al, Solid State Comm., 17, (1975), 309.CrossRefGoogle Scholar
  21. 21.
    A. Eichler, H. Wuhl, B. Stritzker, Solid State Comm., 17, (1975), 213.CrossRefGoogle Scholar
  22. 22.
    M. Horobiowski, T. Skośkiewicz, E. Trojnar, Phys. Stat. Solidi (b) 79, (1977), K147.CrossRefGoogle Scholar
  23. 23.
    C.B. Satterthwaite, D.T. Peterson, J. Less Common Metals, 26, (1972), 361.CrossRefGoogle Scholar
  24. 24.
    T. Skośkiewicz, to be published.Google Scholar
  25. 25.
    J.W. Stewart, J. Phys. Chem. Solids 1, (1956), 146.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • B. Baranowski
    • 1
  • T. Skoskiewicz
    • 1
  1. 1.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations