The AuGa2 Dilemma — Superconducting Version

  • R. A. Hein
  • J. E. Cox
  • R. W. McCallum


The magnetic response of two nominal AuGa2 samples has been studied as functions of temperature, applied magnetic field and pressure. These samples display widely different superconducting transition temperatures, critical magnetic field curves and pressure effects. Variations of the initial slope, i.e., (dHc/dT)To, with pressure supports the concept of an electronic transition at about 0.55 GPa. Changes in the magnetic response as a function of pressure suggest that some sort of lattice transformation must also occur at this pressure.


Initial Slope Superconducting Transition Temperature Magnetic Response Single Crystal Sample Critical Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.T. Weaver, J.E. Schirber and A. Narath, Phys. Rev. B8, 5443, (1973) (References to earlier work are included).Google Scholar
  2. 2.
    V. Jaccarino, M. Weger, J.H. Wernick and A. Menth, Phys. Rev. Letts. 21, 1811 (1968).CrossRefGoogle Scholar
  3. 3.
    J.E. Schirber, Phys. Rev. B6, 333 (1972).Google Scholar
  4. 4.
    J.H. Wernick, A. Menth, T.H. Geballe, G. Hull and J.P. Maita, J. Phys. Chem. Solids 30, 1949 (1969).CrossRefGoogle Scholar
  5. 5.
    J.E. Schirber, Phys. Rev. Letts. 28, 1127 (1972).CrossRefGoogle Scholar
  6. 6.
    T.F. Smith, R.N. Shelton, and J.E. Schirber, Phys. Rev. B8, 3479 (1973).Google Scholar
  7. 7.
    R.A. Hein and R.L. Falge, Jr., Phys. Rev. 123, 407 (1961).CrossRefGoogle Scholar
  8. 8.
    Supercooling is most commonly observed by a hysteresis in the magnetization curve where the expulsion of flux, upon decreasing the magnetic field from above Hc, does not occur until Hsc = Hc(1-x) where x is a few percent of unity.Google Scholar
  9. 9.
    See Schoenberg, D., “Superconductivity,” Cambridge Univ. Press (1965).Google Scholar
  10. 10.
    D.C. Hamilton, Ch. J. Raub, B.T. Matthias, E. Corenzwit and G.W. Hull, Jr., J. Phys. Chem. Solids 26, 665 (1965).CrossRefGoogle Scholar
  11. 11.
    J.T. Longo, P.A. Schroeder and D.J. Sellmyer, Phys. Rev. 182, 658 (1969).CrossRefGoogle Scholar
  12. 12.
    M.E. Straumanis and K.S. Chopra, Z. Physik, Chem. Neue Folge 42, 344 (1964).CrossRefGoogle Scholar
  13. 13.
    G.C. Carter, I.D. Weisman, L.M. Bennett and R.E. Watson, Phys. Rev. B5, 3621 (1972).Google Scholar
  14. 14.
    Ch. J. Raub, R. Soulen, R.A. Hein and J. Willis (to be published).Google Scholar
  15. 15.
    The authors are indebted to Dr. R. Shelton for his help in making these measurements.Google Scholar
  16. 16.
    W.L. McMillan, Phys. Rev. 169, 331 (1968).CrossRefGoogle Scholar
  17. 17.
    L.R. Testardi, Phys. Rev. B1, 4851 (1970).Google Scholar
  18. 18.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
  19. 19.
    E.P. Harris and D.E. Mapother, Phys. Rev. 165, 522 (1968).CrossRefGoogle Scholar
  20. 20.
    R.J. Soulen, D.B. Utton and J.H. Caldwell, Bull. A.P.S. 22, #3, 403 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. A. Hein
    • 1
  • J. E. Cox
    • 1
  • R. W. McCallum
    • 2
  1. 1.Naval Research LaboratoryUSA
  2. 2.Institute for Pure and Applied Physical SciencesUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations