LaAg under Hydrostatic Pressure: Superconductivity and Phase Transformation

  • J. S. Schilling
  • S. Methfessel
  • R. N. Shelton


Measurements of the electrical resistivity of the superconducting (Tc = 1.062K) CsCl-compound LaAg from 1–300K reveal that the application of hydrostatic pressures greater than about 4 kbar induces a cubic-to-tetragonal lattice transformation at a temperature TM. The variation of TM with pressure, dTM/dP = + 20K/kbar, is exceptionally rapid. The superconducting transition temperature Tc has a reversible oscillatory pressure dependence, increasing initially. There is no obvious correlation between the pressure dependence of Tc and TM.


Hydrostatic Pressure Negative Curvature Spot Welding Superconducting Transition Temperature Band Structure Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review of work on A-15 compounds see: L.R. Testardi, Rev. Mod. Phys. 47, 637 (1975); M.Weger and I.B. Goldberg, Solid State Phys. (1973), Vol. 28, ed. by H. Ehrenreich, F. Seitz and D. Turnbull.CrossRefGoogle Scholar
  2. 2.
    R.N. Shelton, A.R. Moodenbaugh, P.D. Dernier, and B.T. Matthias, Mat. Res. Bull. 10, 1111 (1975).CrossRefGoogle Scholar
  3. 3.
    T.F. Smith, R.N. Shelton, and A.C. Lawson, J. Phys. F: Metal Phys. 3, 2157 (1973).CrossRefGoogle Scholar
  4. 4.
    C.W. Chu, S. Huang, T.F. Smith, and E. Corenzwit, Phys. Rev. B 11, 1866 (1975).CrossRefGoogle Scholar
  5. 5.
    R.N. Shelton, D.C. Johnston, and J.J. Bugaj, Bull. Am. Phys. Soc. 22, 402 (1977).Google Scholar
  6. 6.
    Z. Fisk and A.C. Lawson, Solid State Commun. 13, 277 (1973);CrossRefGoogle Scholar
  7. 6a.
    Z. Fisk, R. Viswanathan, and G.W. Webb, Solid State Commun. 15, 1797 (1974).CrossRefGoogle Scholar
  8. 7.
    A.R. Moodenbaugh and Z. Fisk, Phys. Lett. 43A, 479 (1973).Google Scholar
  9. 8.
    R.W. Hill, J. Cosier, and D.A. Hukin, J. Phys. F6, 1731 (1976). For N(Ef) estimate, see also: R. Backhus (private communication in same institute).CrossRefGoogle Scholar
  10. 9.
    C.C. Chao, H.L. Luo, and T.F. Smith, J. Phys. Chem. Solids 27, 1555 (1966).CrossRefGoogle Scholar
  11. 10.
    H. Balster, H. Ihrig, A. Kockel, and S. Methfessel, Z. Physik B21, 241 (1975). For X-ray results on LaAg1-xInx, see also: H. Camen, Diplom-Thesis, Univ. Bochum, 1976 (unpublished).Google Scholar
  12. 11.
    H. Ihrig, D.T. Vigren, J. Kübier, and S. Methfessel, Phys. Rev. B8, 4525 (1973).Google Scholar
  13. 12.
    J. Labbe and J. Friedel, J. Phys. Radium 27, 153, 303 (1966).Google Scholar
  14. 13.
    H. Ihrig, thesis (University of Bochum, 1973) (unpublished).Google Scholar
  15. 14.
    T. Kasuya (private communication).Google Scholar
  16. 15.
    B.T. Matthias, E. Corenzwit, J.M. Vandenberg, H. Barz, M.B. Maple and R.N. Shelton, J. Less Common Metals 46, 339 (1976).CrossRefGoogle Scholar
  17. 16.
    A. Jayaraman, A.R. Hutson, J.H. McFee, A.S. Coriell, and R.G. Maines, Rev. Sci. Inst. 38, 44 (1967).CrossRefGoogle Scholar
  18. 17.
    P.E. Chester and G.O. Jones, Phil. Mag. 44, 1281 (1953).Google Scholar
  19. 18.
    T.F. Smith, C.W. Chu, and M.B. Maple, Cryogenics 9, 53 (1969).CrossRefGoogle Scholar
  20. 19.
    N. Kawai and Sawaoka, Rev. Sci. Inst. 38, 1770 (1967).CrossRefGoogle Scholar
  21. 20.
    J.S. Schilling, U.F. Klein, and W.B. Holzapfel, Rev. Sci. Instrum. 45, 1353 (1974).CrossRefGoogle Scholar
  22. 21.
    After the 0 and 6.31 kbar measurements it was necessary to recontact the sample. Near room temperature and for P<15 kbar we find ρ(T,P) = 40 [1 + 0.0039P - 0.00338 (290-T)] μΩcm with P in kbar. The 35 kbar run was carried out in a quasihydrostatic pressure cell and was normalized to the hydrostatic data using the estimated pressure dependence of the resistivity at room temperature.Google Scholar
  23. 22.
    H. Balster (private communication in same institute).Google Scholar
  24. 23.
    S.K. Ghatak, D.K. Ray, and C. Tannous (to be published in Phys. Rev. B).Google Scholar
  25. 24.
    A. Hasegawa, B. Bremicker, and J. Kubier, Z. Physik B22, 231 (1975).Google Scholar
  26. 25.
    C. Tannous, D.K. Ray, and M. Belakhovsky, J. Phys. F6, 2091 (1976).CrossRefGoogle Scholar
  27. 26.
    D.W. Woodward and G.D. Cody, RCA Rev. 25, 392 (1964).Google Scholar
  28. 27.
    R.W. Cohen, G.D. Cody, J.J. Halloran, Phys. Rev. Lett. 19, 840 (1967).CrossRefGoogle Scholar
  29. 28.
    P.B. Allen (to be published).Google Scholar
  30. 29.
    Z. Fisk and G.W. Webb, Phys. Rev. Letters 36, 1084 (1976).CrossRefGoogle Scholar
  31. 30.
    G.W. Webb, Z. Fisk, J.J. Engelhardt, and S.D. Badar, Phys. Rev. B15, 2624 (1977).Google Scholar
  32. 31.
    R.N. Shelton, A.C. Lawson, and D.G. Johnston, Mat. Res. Bull. 10, 297 (1975).CrossRefGoogle Scholar
  33. 32.
    H. Balster and J. Wittig, J. Low Temp. Phys. 21, 377 (1975).CrossRefGoogle Scholar
  34. 33.
    J.C. Phillips, Phys. Rev. Lett. 26, 543 (1971).CrossRefGoogle Scholar
  35. 34.
    Values of Tc(P) for fcc-La and dhep-La are from Balster and Wittig (Ref. 32) and for La3Co, LaAl2, LaZn, and LaMg2 from T.F. Smith and H.L. Luo, J. Phys. Chem. Solids 28, 569 (1967). Tc(P) for LaAg is from present work, for amorphous La.78 Au.22 from Fasol et al (Ref. 35), and for LaCd from A.M. Stewart (private communication). The compressibility K for fcc-La was taken from Syassen and Holzapfel (Ref. 36); for dhcp-La and amorphous La.78 Au.22 the same K was assumed as for fcc-La. For LaZn, K was taken to be same as for LaAg (~0.13%/kbar) and for LaAl2 and La-Co it was assumed K≃0.10%/kbar.CrossRefGoogle Scholar
  36. 35.
    G. Fasol, J.S. Schilling, and C.C. Tsuei (to be published).Google Scholar
  37. 36.
    K. Syassen and W. B. Holzapfel, Solid State Commun. 16, 533 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. S. Schilling
    • 1
  • S. Methfessel
    • 1
  • R. N. Shelton
    • 2
  1. 1.Institut für Experimentalphysik IVUniversität BochumBochumGermany
  2. 2.Institute for Pure and Applied ScienceUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations