The Isothermal Pressure Derivatives of the Elastic Shear Modulus for V3Si

  • C. S. Ting


The effects of a hydrostatic pressure on the shear modulus cs and the structural transition temperature T of V3Si are studied on the basis of the coupled chain model of Gorkov Cor the model proposed recently by Lee, Birman and Williamson). Taking into account the charge transfer effect between different bands and choosing suitable values for the Fermi energies, our results can account for the temperature dependences of (∂cs/∂p)T quantitatively for transforming V3Si and satisfactorily for nontransforming V3Si.


Fermi Level Fermi Energy Band Structure Calculation Vanadium Atom State Peak 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.R. Testardi, Physical Acoustics, edited by W.P. Mason and R. N. Thurston (Academic, New York 1973).Google Scholar
  2. 2.
    M. Weger and I. B. Goldberg, Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic, New York, 1973) Vol. 28.Google Scholar
  3. 3.
    P.F. Garcia and G.R. Barsch, Phys. Status Solids B59, 595 (1973).Google Scholar
  4. 4.
    R.E. Larsen and A.L. Knoff, J. Appl. Phys. 44, 1021 (1973).CrossRefGoogle Scholar
  5. 5.
    C.S. Ting and A.K. Ganguly, Phys. Rev.B9, 2781 (1974).Google Scholar
  6. 6.
    G. R. Barsch and D.A. Rogowski, Mater. Res. Bull. 8, 1459 (1973). In this work, the charge transfer parameter ν < o is assumed for nontransforming V3Si.CrossRefGoogle Scholar
  7. 7.
    J. Noolandi and C.M. Varma, Phys. Rev. B11, 4743 (1975).Google Scholar
  8. 8.
    L.F. Matteiss, Phys. Rev. B12, 2161 (1975Google Scholar
  9. 9.
    L.P. Gorkov, Zh Eksp. Teor. Pisma 30, 571 (1974);Google Scholar
  10. 9a.
    L.P. Gorkov and D.N. Dorokhov, J. Low Temp. Phys. 22, 1 (1976).CrossRefGoogle Scholar
  11. 10.
    T.K. Lee, J.L. Birman and S.J. Williamson (to be published).Google Scholar
  12. 11.
    J. Labbe and J. Friedal, J.Phys. (Paris) 27, 153, 303, 708 (1966).CrossRefGoogle Scholar
  13. 12.
    R.W. Cohen, G.D. Cody and J.J. Halloran, Phys. Rev. Lett. 19, 840 (1967).CrossRefGoogle Scholar
  14. 13.
    C.M. Varma, J.C. Phillips and S.T. Chui, Phys. Rev. Lett. 33, 292 (1967).Google Scholar
  15. 14.
    Here we assume that the high density of states peak is located at or near the R-point in the reciprocal lattice, the cutoff energy Eo in the lower bound of the integration has to be introduced.Google Scholar
  16. 15.
    L.T. Testardi and T.B. Bateman, Phys. Rev. 154, 402 (1967).CrossRefGoogle Scholar
  17. 16.
    For V3Si the structural transition is a weak first-order one, and the condition cs = o at Tm in principle can no longer be applied to determine Tm. However, in the present model more than 95% of Tm comes from cs = o for V3SL Therefore the use of Born’s stability limit to determine Tm for V3Si should be valid.Google Scholar
  18. 17.
    L.T. Testarid, J.E. Kunzler, H.J. Levinstein, J.P. Maita, and J.H. Weinick, Phys. Rev. B3, 107 (1971).Google Scholar
  19. 18.
    C.W. Chu and L.R. Testardi, Phys. Rev. Lett. 32, 766 (1974).CrossRefGoogle Scholar
  20. 19.
    R.D. Blaugher, A. Taylor and M. Ashkin, Phys. Rev. Lett. 33, 292 (1967).CrossRefGoogle Scholar
  21. 20.
    L.P. Gorkov and O.N. Dorokhov, Solid State Commun. 19, 1107 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • C. S. Ting
    • 1
  1. 1.University of HoustonHoustonUSA

Personalised recommendations