High Temperature Superconductivity and Instabilities

  • C. W. Chu


It is known that high temperature superconductors are unstable, Different models have been proposed to explain the high temperature superconductivity and instabilities. High pressure experiments in a hydrostatic environment testing these models are reviewed and discussed. New data on single crystalline V3Si and polycrystalline Nb3Sn1-xYx(Y = Al and Sb) are also included. Although no unique picture emerges at the present time, existing high pressure results tend to lend support to the electron model emphasizing the roles of electrons. Further experiments are proposed and planned for better understanding of the origin of high temperature superconductivity and instabilities, and their correlation.


Structural Transformation Pressure Effect Triple Point Pressure Dependence High Temperature Superconductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.E. Hardy and J.K. Hulm, Phys. Rev. 89, 884 (1958).CrossRefGoogle Scholar
  2. 2.
    B.T. Matthias, T.H. Geballe, S. Geller and E. Corenzwit, Phys. Rev. 95, 1453 (1954).CrossRefGoogle Scholar
  3. 3.
    L.R. Testardi, J.H. Wernick and W.A. Royer, Solid State Coram. 15, 1 (1974);CrossRefGoogle Scholar
  4. 3a.
    L.R. Testardi, R.L. Meek, J.M. Poate, W.A. Royer, A.R. Storm and J.H. Wernick, Phys. Rev. B11, 4304 (1975).CrossRefGoogle Scholar
  5. 4.
    For a review see L.R. Testardi, Physical Acoustics 10, 193 (1973).Google Scholar
  6. 5.
    For a review see M. Weger and I. B. Goldberg, Solid State Phys. 28, 1 (1973).CrossRefGoogle Scholar
  7. 6.
    B.W. Batterman and C.S. Barrett, Phys. Rev. Lett. 13, 390 (1964);CrossRefGoogle Scholar
  8. 6a.
    B.W. Batterman and C.S. Barrett Phys. Rev. 149, 296 (1966).CrossRefGoogle Scholar
  9. 7.
    R. Mailfert, B.W. Batterman and J.J. Hanak, Phys. Lett. A24, 315 (1967).CrossRefGoogle Scholar
  10. 8.
    L.R. Testardi and T.B. Bateman, Phy. Rev. 154, 402(1967).CrossRefGoogle Scholar
  11. 9.
    K.R. Keller and J.J. Hanak, Phys. Rev. 154, 628 (1967).CrossRefGoogle Scholar
  12. 10.
    G. Shirane, J.D. Axe and R.J. Birgeneau, Solid State Comm. 9, 397 (1971);CrossRefGoogle Scholar
  13. 10a.
    G. Shirane and J.D. Axe, Phys. Rev. Lett. 27, 1803 (1971);CrossRefGoogle Scholar
  14. 10b.
    J.D. Axe and G. Shirane, Phys. Rev. B8, 1965 (1973).Google Scholar
  15. 11.
    B.T. Matthias, E. Corenzwit, A.S. Cooper and L.D. Longinotti, Proc. Nat. Acad. Sci. (USA) 68, 56 (1971).CrossRefGoogle Scholar
  16. 12.
    A.R. Sweedler, D.E. Cox, S. Mbehlecke, L.R. Newkirk and F.A. Valencia, J. Low Temp. Phys. 24, 645 (1976) and references therein.CrossRefGoogle Scholar
  17. 13.
    See information included in Table I.Google Scholar
  18. 14.
    H. Fröhlich, Proc. R. Soc. A215, 291 (1952).Google Scholar
  19. 15.
    W. Cochran, Phys. Rev. Lett. 3, 412 (1959).CrossRefGoogle Scholar
  20. 16.
    P.W. Anderson, Fiz. Dielectrikov, AN SSR, Moscow, 1960.Google Scholar
  21. 17.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
  22. 18.
    W.L. McMillan, Phys. Rev. 167, 331 (1968).CrossRefGoogle Scholar
  23. 19.
    M. Weger, Rev. Mod. Phys. 36, 175 (1964);CrossRefGoogle Scholar
  24. 19a.
    J. Labbe and J. Fridel J. Physique 27, 153, 303, 708 (1966).CrossRefGoogle Scholar
  25. 20.
    J. Labbé, S. Barisic and J. Friedel, Phys. Rev. Lett. 19, 1039 (1967).CrossRefGoogle Scholar
  26. 21.
    J. Labbé, Phys. Rev. 158, 647 (1967).CrossRefGoogle Scholar
  27. 22.
    J. Labbé, Phys. Rev. 158, 655 (1967).CrossRefGoogle Scholar
  28. 23.
    R.W. Cohen, G.D. Cody and J.J. Halloran, Phys. Rev. Lett. 19, 840 (1967). The analytical form of the electron density of states used is different from that in Ref. 19.CrossRefGoogle Scholar
  29. 24.
    S. Barisić and J. Labbé, J. Phys. Chem. Solids 28, 2477(1967).CrossRefGoogle Scholar
  30. 25.
    J. Labbé, Phys. Rev. 172, 451 (1968).CrossRefGoogle Scholar
  31. 26.
    S. Barisić, Phys. Lett. 26, 829 (1971).CrossRefGoogle Scholar
  32. 27.
    G.R. Barsch and D.A. Rogowski, Mat. Res. Bull. 8, 1459 (1973).CrossRefGoogle Scholar
  33. 28.
    C.S. Ting and A.K. Ganguly, Phys. Rev. B9, 2781 (1974).Google Scholar
  34. 29.
    C.W. Chu, Phys. Rev. Lett. 33, 1283 (1974).CrossRefGoogle Scholar
  35. 30.
    L.F. Mattheiss, Phys. Rev. B12, 2161 (1975).Google Scholar
  36. 31.
    L.P. Gorkov and D.N. Dorokhov, J. Low Temp. Phys. 22, 1 (1976) and C.S. Ting, private communication.CrossRefGoogle Scholar
  37. 32.
    C.S. Ting, the following paper.Google Scholar
  38. 33.
    L.R. Testardi, Phys. Rev. B5, 4342(1972).CrossRefGoogle Scholar
  39. 34.
    P.B. Allen, J.C.K. Hui, W.E. Pickett, C.M. Varma and Z. Fisk, Solid State Comm. 18, 1157 (1976).CrossRefGoogle Scholar
  40. 35.
    J.C. Phillips, Solid State Comm. 18, 831 (1976) and references therein.CrossRefGoogle Scholar
  41. 36.
    C.M. Varma, J.C. Phillips and S.T. Chui, Phys. Rev. Lett. 33, 1233 (1974)CrossRefGoogle Scholar
  42. 36a.
    S.T. Chui, Phys. Rev. B11, 831(1976).Google Scholar
  43. 37.
    C.W. Chu and L.R. Testardi, Phys. Rev. Lett. 32, 766(1974).CrossRefGoogle Scholar
  44. 38.
    C.W. Chu, S. Huang, T.F. Smith and E. Corenzwit, Phys. Rev. B11, 1866 (1975).Google Scholar
  45. 39.
    T.F. Smith, R.N. Shelton and A.C. Lawson, J. Phys. F: Metal Phys. 3, 2157 (1973).CrossRefGoogle Scholar
  46. 40.
    R.N. Shelton, A.R. Moodenbaugh, P.D. Dernier and B.T. Matthias, Mat. Res. Bull. 10, 111 (1975).Google Scholar
  47. 41.
    R.N. Shelton, Ph.D. Thesis, University of California, San Diego, 1975.Google Scholar
  48. 42.
    C. Berthier, P. Molinie and D. Jerome, Solid State Comm. 18, 1393 (1976).CrossRefGoogle Scholar
  49. 43.
    C.W. Chu, V. Diatschenko, C.Y. Huang and F.J. DiSalvo, Phys. Rev. B15, 1340(1977).CrossRefGoogle Scholar
  50. 44.
    R. Delaplace, P. Molinie and D. Jerome, J. Physique Lett. 37, L.13 (1976).CrossRefGoogle Scholar
  51. 45.
    C.W. Chu, L.R. Testardi, F.J. DiSalvo and D.E. Moncton, Phys. Rev. B14, 464 (1976).Google Scholar
  52. 46.
    R.H. Friend, D. Jerome, R. Frindt, A.J. Grant, and A.D. Yoffe, preprint.Google Scholar
  53. 47.
    L.R. Testardi, J.E. Kunsler, H.J. Levinstein and J.H. Wernick, Solid State Comm. 8, 907 (1970).CrossRefGoogle Scholar
  54. 48.
    See references in Ref. 33.Google Scholar
  55. 49.
    H. Neubauer, Z. Phys. 226, 211(1969);CrossRefGoogle Scholar
  56. 49a.
    T.F. Smith, Phys. Rev. Lett. 25, 1483(1970).CrossRefGoogle Scholar
  57. 50.
    P.R. Carcia, G.R. Barsch and L.R. Testardi, Phys. Rev. Lett. 27, 944 (1971).CrossRefGoogle Scholar
  58. 51.
    R.E. Larsen and A.L. Ruoff, J. Appl. Phys. 44, 1021(1973).CrossRefGoogle Scholar
  59. 52.
    For the transition metal dichalcogenides, Friedel(J. Friedel, J. Physique Lett. 36, L. 279 (1975)) proposed that the structural transformation at the onset of the charge density wave state will decrease the density of states at the Fermi level due to the creation of an energy gap and accordingly reduce Tc. With the application of pressure, the decrease of the density of states associated with the structural transformation is reduced, and the density of states is thus enhanced. Therefore opposite pressure effects are expected on TL and Tc. It is also suggested that the argument may be valid for A15 compounds.CrossRefGoogle Scholar
  60. 53.
    L.R. Testardi, Rev. Mod. Phys. 47, 637(1975).CrossRefGoogle Scholar
  61. 54.
    S. Huang and C.W. Chu, Phys. Rev. B10, 4030 (1974).Google Scholar
  62. 55.
    R.N. Shelton and T.F. Smith, Mat. Res. Bull. 10, 1013 (1975).CrossRefGoogle Scholar
  63. 56.
    R. D. Blaugher, A. Taylor and M. Ashkin, Phys. Rev. Lett. 33, 292 (1974).CrossRefGoogle Scholar
  64. 57.
    The sample investigated here was the same one used in Ref. 37 except it was exposed to air at ~550K for about 10 hours. This might account for the slightly different values of Tc, TL, ∂Tc/∂p and ∂TL/∂p obtained in the present study from those in Ref. 35, for P≤ 18 kbar.Google Scholar
  65. 58.
    L.J. Vieland and A.W. Wicklund, Phys. Lett. 34A, 43 (1971).Google Scholar
  66. 59.
    L.J. Vieland, J. Phys. Chem. Solids, 31, 1449 (1970).CrossRefGoogle Scholar
  67. 60.
    L.R. Testardi and C.W. Chu, Phys. Rev. B15, 146 (1977).Google Scholar
  68. 61.
    P. Sen, J.D. McGervey, C. Knox and C.W. Chu, preprint.Google Scholar
  69. 62.
    J.M. Poate, L.R. Testardi, A.R. Storm and W.M. Augustyniak, Phys. Rev. Lett. 35, 1290 (1975).CrossRefGoogle Scholar
  70. 63.
    J. Nooland and L.R. Testardi, Preprint.Google Scholar
  71. 64.
    L.R. Testardi, J.M. Poate and H.J. Levinstein, Phys. Rev. Lett. 37, 637 (1976).CrossRefGoogle Scholar
  72. 65.
    L.R. Testardi, APS Bull21, 220(1976).Google Scholar
  73. 66.
    C.W. Chu, L.R. Testardi and P.H. Schmidt, to appear in Solid State Comm. (1977).Google Scholar
  74. 67.
    R.H. Willens, T.H. Geballe, A.C. Gossard, J.R. Maita, A. Menth, G.W. Hull, Jr. and R.R. Soden, Solid State Coram. 7, 837(1969).Google Scholar
  75. 68.
    J.M.E. Harper, T.H. Gehalle, L.R. Newkirk and S.A. Valencia, J. Less. Com. Metals 43, 5 (1975).CrossRefGoogle Scholar
  76. 69.
    H.G. Smith, N. Wakabayashi and M. Mostoller, Superconductivity in d- and f-Band Metals, ed. by D.H. Douglass (Plenum, 1976), P. 223.CrossRefGoogle Scholar
  77. 70.
    R.N. Bhatt and W.L. McMillan, Phys. Rev. B14, 1007 (1976) and references therein.CrossRefGoogle Scholar
  78. 71.
    P.H. Schmidt, E.G. Spencer, D.C. Joy and J.M. Rowell, Superconductivity in d-and f-Band Metals, ed. by D.H. Douglass (Plenum, 1976) p. 431.Google Scholar
  79. 72.
    C.W. Chu, C.Y. Huang, P.H. Schmidt and K. Sugawara, Superconductivity in d-and f-Band Metals, ed. by D.H. Douglass(Plenum, 1976) p.453.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • C. W. Chu
    • 1
    • 2
  1. 1.Department of PhysicsCleveland State UniversityClevelandUSA
  2. 2.Department of PhysicsUniversity of HoustonHoustonUSA

Personalised recommendations