Anharmonicity in A15 Superconductors: A Thermal Expansion Approach

  • T. F. Smith
  • T. R. Finlayson


The highly anharmonic behaviour for the A15 compounds V3Si and Nb3Sn has been the subject of considerable theoretical and experimental study. The majority of theoretical treatments place the emphasis on the electronic contribution to the free energy.

Thermal expansion measurements provide a direct measure of an-harmonicity and measurements have been made for a number of A15 compounds. The expansion behaviour for V-Si and Nb-Sn compounds, close to the stoichiometric A3B composition, and V3Ge is found to be highly anomalous. In the case of the V-Si compounds, it is argued from an analysis of the expansion behaviour in the superconducting state that the lattice is responsible for the anharmonic properties. The anomalous expansion in the Nb-Sn compounds is intimately associated with the occurrence of the cubic-tetragonal structural distortion. No specific conclusions have been reached concerning the origin of the anomalous expansion for V3Ge.


Thermal Expansion Linear Thermal Expansion Gruneisen Parameter Thermal Expansion Measurement Anharmonic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.R. Testardi, Physical Acoustics, Vol. 10, ed. W.P. Mason and R.N. Thurston (Academic Press, N.Y.) 1973, pp193.Google Scholar
  2. 2.
    M. Weger and I.B. Goldberg, Solid State Phys., Vol. 28, ed. F. Seitz and D. Turnbull (Academic Press, N.Y.) 1973, ppl.Google Scholar
  3. 3.
    See for example D.C. Wallace, Thermodynamics of Crystals (John Wiley, 1972) p285.Google Scholar
  4. 4.
    M. Weger, Rev. Mod. Phys. 36, 175 (1964);CrossRefGoogle Scholar
  5. 4a.
    J. Labbé and J. Friedel, J. Physique 27, 153 (1966);CrossRefGoogle Scholar
  6. 4b.
    J. Labbé, Phys. Rev. 158, 647 (1967);CrossRefGoogle Scholar
  7. 4c.
    J. Labbé, Phys. Rev. 172, 451 (1968).CrossRefGoogle Scholar
  8. 5.
    L.P. Gor’kov, Zh. Eksp. Teor. Fiz. Pis’ma Red. 17, 525 (1973) [JETP Lett. 17, 379 (1973)]; Zh. Eksp. Teor. Fiz. 65, 1658 (1973)[Sov. Phys. JETP 38, 830 (1974)]; L.P. Gor’kov and O.N. Dorokhov, J. Low Temp. Phys. 22, 1 (1976; Zh. Eksp. Teor. Fiz. Pis’ma Red. 21 656 (1975 [JETPlett. 21, 310 (1975)].Google Scholar
  9. 6.
    R.N. Bhatt and W.L. McMillan, Phys. Rev 14, 1007 (1976).CrossRefGoogle Scholar
  10. 7.
    L.R. Testardi, Phys. Rev. B. 5, 4342 (1972).CrossRefGoogle Scholar
  11. 8.
    P.B. Allen, J.C.K. Hui., W.E. Pickett, CM. Varma and Z Fisk, Solid State Commun. 18, 1157 (1976).CrossRefGoogle Scholar
  12. 9.
    J.C Phillips, Solid State Commun. 18, 831 (1976);CrossRefGoogle Scholar
  13. 9a.
    CM. Varma, J.C Phillips and S.T. Chui, Phys. Rev. Lett. 33, 1223 (1974).CrossRefGoogle Scholar
  14. 10.
    S.T. Chui, Phys. Rev. B 11, 3457 (1975).CrossRefGoogle Scholar
  15. 11.
    Testardi, ref. 7 reports expansion coefficients between 40 and 300 K for V3Si and V3Ge. E. Fawcett, Phys. Rev. Lett. 26, 829 (1971) has measured the thermal expansion for single crystal V3Si at temperatures below 30K.Google Scholar
  16. 12.
    T.F. Smith, T.R. Finlayson and R.N. Shelton, J. Less-Comm. Metals 43, 21 (1975).CrossRefGoogle Scholar
  17. 13.
    T.F. Smith, T.R. Finlayson and A. Taft, Commun. on Phys. 1, 167 (1976)Google Scholar
  18. 14.
    A. Junod, J.L. Staudenmann, J. Muller and P. Spitzli, J. Low Temp. Phys. 5, 25 (1971).CrossRefGoogle Scholar
  19. 15.
    M. Rosen, H. Klimker and M. Weger, Phys. Rev. 184, 466 (1969).CrossRefGoogle Scholar
  20. 16.
    K.R. Keller and J.J. Hanak, Phys. Rev. 154, 628 (1967).CrossRefGoogle Scholar
  21. 17.
    G.S. Knapp, S.D. Bader, H.V. Culbert, F.Y. Fradin and T.E. Klippert, Phys. Rev. B. 11, 4331 (1975).CrossRefGoogle Scholar
  22. 18.
    P. Spitzli, Phys. Kon. Mat. 13, 22 (1971).CrossRefGoogle Scholar
  23. 19.
    C.W. Chu and L.R. Testardi, Phys. Rev. Lett. 32, 766 (1974).CrossRefGoogle Scholar
  24. 20.
    C.W. Chu, Phys. Rev. Lett. 33, 1283 (1974).CrossRefGoogle Scholar
  25. 21.
    P.B. Allen, Solid State Commun., 14, 937 (1974);CrossRefGoogle Scholar
  26. 21a.
    P.B. Allen and R.C. Dynes, Phys. Rev. B. 12, 905 (1975).CrossRefGoogle Scholar
  27. 22.
    G.R. Barsch and D.A. Rogowski, Mater. Res. Bull., 8, 1459 (1973).CrossRefGoogle Scholar
  28. 23.
    J. Labbe, S. Barisic and J. Friedel, Phys. Rev. Lett., 19, 1039 (1967).CrossRefGoogle Scholar
  29. 24.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
  30. 25.
    M.A. Simpson and T.F. Smith, to be published.Google Scholar
  31. 26.
    T.H.K. Barron, Ann. Phys. 1, 77 (1957).CrossRefGoogle Scholar
  32. 27.
    L.R. Testardi and T.B. Bateman, Phys. Rev. 154, 402 (1967).CrossRefGoogle Scholar
  33. 28.
    J.G. Collins and G.K. White, Progress in Low Temperature Physics IV, ed. C.J. Gorter (Amsterdam, North-Holland) pp450.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • T. F. Smith
    • 1
  • T. R. Finlayson
    • 1
  1. 1.Department of PhysicsMonash UniversityClaytonAustralia

Personalised recommendations