Metallic Hydrogen: Recent Theoretical Progress

  • A. K. McMahan


A summary is given of recent theoretical progress in determining the insulator-to-metal transition pressure in condensed hydrogen, and in understanding the nature of each of these phases. Some of the problems involved in retaining the metallic phase metastability at low pressures are reviewed.


Pair Potential Transition Pressure Dissociation Pressure Metallic Hydrogen Quantum Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Wigner and H.B. Huntington, J. Chem. Phys. 3, 764 (1935).CrossRefGoogle Scholar
  2. 2.
    A.A. Abrikosov, Astron. Zh. 31, 112 (1954).Google Scholar
  3. 3.
    V.P. Trubitsyn, Fiz. Tverd. Tela. 8, 862 (1966) [Google Scholar
  4. 3a.
    V.P. Trubitsyn, Sov. Phys. Solid State 8, 688 (1966)].Google Scholar
  5. 4.
    G.A. Neece, F.J. Rogers, and W.G. Hoover, J. Compt. Phys. 7, 621 (1971).CrossRefGoogle Scholar
  6. 5.
    D.A. Liberman, “Equation of State of Molecular Hydrogen at High Pressure”, LA-4727-MS, Los Alamos Scientific Laboratory (1971); Int. J. Quan. Chem. Symp. No. 10, 297 (1976).Google Scholar
  7. 6.
    E.A. Dynin, Fiz. Tverd. Tela. 13, 2488 (1971) [Google Scholar
  8. 6a.
    E.A. Dynin, Sov. Phys. Solid State 13, 2089 (1972)].Google Scholar
  9. 7.
    G.F. Chapline Jr., Phys. Rev. B6, 2067 (1972).Google Scholar
  10. 8.
    E. Ostgaard, Phys. Lett. 45A, 371 (1973).Google Scholar
  11. 9.
    L.G. Caron, Phys. Rev. B9, 5025 (1974). Caron’s Fig. 4 has been used to obtain the rms atomic vibrational amplitude for fcc monatomic hydrogen shown in Fib. 7 (solid curve) of the present paper.Google Scholar
  12. 10.
    M. Ross, J. Chem. Phys. 60, 3634 (1974).CrossRefGoogle Scholar
  13. 11.
    M. Ross, R.H. Ree, and R.N. Keeler, Proc. of the Fourth Int. Conf. on High Pressure (Kyoto, 1974), pp. 852.Google Scholar
  14. 12.
    J. Hammerberg and N.W. Ashcroft, Phys. Rev. B9, 409 (1974).Google Scholar
  15. 13.
    R. Etters, R. Danilowicz and W. England, Phys. Rev. A12, 2199 (1975).Google Scholar
  16. 14.
    D.E. Ramaker, L. Kumar and F.E. Harris, Phys. Rev. Lett. 34, 812 (1975).CrossRefGoogle Scholar
  17. 15.
    M. Ross and A.K. McMahan, Phys. Rev. B13, 5154 (1976).Google Scholar
  18. 16.
    F.V. Grigor’ev, S.B. Kormer, O.L. Mikhailova, A.P. Tolochko, and V.D. Urlin, ZhETF Pis. Red. 16, 286 (1972) [Google Scholar
  19. 16a.
    F.V. Grigor’ev, S.B. Kormer, O.L. Mikhailova, A.P. Tolochko, and V.D. Urlin, JETP Lett. 16, 201 (1972)];Google Scholar
  20. 16b.
    F.V. Grigor’ev, S.B. Kormer, O.L. Mikhailova, A.P. Tolochko, and V.D. Urlin, Zh. Eksp. Teor. Fiz. 69, 743 (1975) [Google Scholar
  21. 16c.
    F.V. Grigor’ev, S.B. Kormer, O.L. Mikhailova, A.P. Tolochko, and V.D. Urlin, Sov. Phys. JETP 42, 378 (1975)].Google Scholar
  22. 17.
    R.S. Hawke, D.E. Duerre, J.G. Huebel, R.N. Keeler, and H. Klapper, Phys. Earth Planet. Interiors 6, 44 (1972).CrossRefGoogle Scholar
  23. 18.
    N. Kawai, M. Togaya and O. Mishima, Proc Japan Acad. 51, 630 (1975).Google Scholar
  24. 19.
    L.F. Vereshchagen, E.N. Yakovlev and Yu. A. Timofeev, ZhETF Pis. Red. 21, 190 (1975)Google Scholar
  25. 19a.
    L.F. Vereshchagen, E.N. Yakovlev and Yu. A. Timofeev, IJETP Lett. 21, 85 (1975)];E.N. Yakovlev, Priroda, No. 4, 66–69 (1976).Google Scholar
  26. 20.
    W.G. Hubbard and R. Smoluchowski, Space Sci. Rev. 14, 599 (1973).CrossRefGoogle Scholar
  27. 21.
    N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).CrossRefGoogle Scholar
  28. 22.
    M. Ross and C. Shishkevish, “Molecular and Metallic Hydrogen”, Rept. R-2056-ARPA, May 1977, Rand Corporation, Santa Monica, Ca 90406.Google Scholar
  29. 23.
    C. Friedli and N.W. Ashcroft, Phys. Rev. B, to be published.Google Scholar
  30. 24.
    G.V. Chester, to be published.Google Scholar
  31. 25.
    D.M. Straus and N.W. Ashcroft, Phys. Rev. Lett. 38, 415 (1977).CrossRefGoogle Scholar
  32. 26.
    E.G. Brovman, Yu. Kagan and A. Kholas, Zh. Eksp. Teor. Fiz. 61, 2429 (1971);Google Scholar
  33. 26a.
    E.G. Brovman, Yu. Kagan and A. Kholas, Zh. Eksp. Teor. Fiz. 62, 1492 (1974) [Google Scholar
  34. 26b.
    E.G. Brovman, Yu. Kagan and A. Kholas, Sov. Phys. JETP 34, 1300 (1972);Google Scholar
  35. 26c.
    E.G. Brovman, Yu. Kagan and A. Kholas, Sov. Phys. JETP 35, 783 (1972)].Google Scholar
  36. 27.
    A.K. McMahan, H. Beck and J.A. Krumhansl, Phys. Rev. A9, 1852 (1974).Google Scholar
  37. 28.
    F.H. Ree and C.F. Bender, Phys. Rev. Lett. 32, 85 (1974).CrossRefGoogle Scholar
  38. 29.
    B.K. Tong and L.J. Sham, Phys. Rev. A1, 139 (1965);Google Scholar
  39. 29a.
    Y.S. Kim and R.G. Gordon, J. Chem. Phys. 60, 1842 (1974).CrossRefGoogle Scholar
  40. 30.
    At low densitits where the correlation energy becomes very important, conventional electron band theory breaks down. The monatomic phase of hydrogen may in fact undergo a Mott transition to an insulating state. However, the calculations of Ambladh et al. [C.O. Almbladh, U. von Barth, Z.D. Popovic, and M.J. Stott, Phys. Rev. B14, 2250 (1976)] indicate that this transition will occur at such a low density (rs = 1.9) as to correspond to a negative pressure. Throughout this paper, then, it is assumed that the monatornie phase is indeed everywhere metallic. Similar conclusions have been reached by Aviram, et al. [Google Scholar
  41. 30a.
    I. Aviram, S. Goshen, Y. Rosenfeld, and R. Thieberger, J. Chem. Phys. 65, 846 (1976).]CrossRefGoogle Scholar
  42. 31.
    Liberman’s Korringa-Kohn-Rostocker calculations for the molecular phase (Ref. 5) do not show band overlap. It is possible that the spherical approximation used for the molecules in this work is the source of this difference. Liberman finds that the optimized diameter of these spherical molecules (analogous to the bond length) steadily decreases with compression, whereas using a rigorous treatment of the molecular configuration Ramaker et al. (Ref. 14) find the bond length to first stay the same and then increase with compression. It is consistent with the work of Ref. 23 that a decreasing bond length will delay and perhaps eliminate altogether closing of the gap.Google Scholar
  43. 32.
    N.F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 1974), pp. 19.Google Scholar
  44. 33.
    I.M. Lifshitz, Z. Expl. Theor. Phys. 38, 1569 (1960) [Google Scholar
  45. 33a.
    I.M. Lifshitz, Sov. Phys.-JETP 11, 1130 (1960)].Google Scholar
  46. 34.
    A.S. Balchan and H.G. Drickamer, J. Chem. Phys. 34, 1948 (1961);CrossRefGoogle Scholar
  47. 34a.
    L.F. Vereshchagin, A.A. Semerchan, N.N. Kuzin and Yu A. Sadkov, Dokl. Akad. Nauk SSSR, 209, 1311 (1973) [.Google Scholar
  48. 34b.
    L.F. Vereshchagin, A.A. Semerchan, N.N. Kuzin and Yu A. Sadkov, gov. Phys. Dokl. 18, 249 (1973)].Google Scholar
  49. 35.
    Early work by Alder and Christian[B.J. Alder and R.H. Christian, Phys. Rev. Lett. 4, 450 (1960)] claimed to see such a transition, but is now believed to be in error. See Ref. 36.CrossRefGoogle Scholar
  50. 36.
    A.K. McMahan, B.L. Hord and M. Ross, Phys. Rev. B15, 726 (1977).Google Scholar
  51. 37.
    This zero pressure density comes from the augmented-plane-wave calculations reported in Ref. 15. Free electron perturbation theory gives a zero pressure value of rs closer to 1.6.Google Scholar
  52. 38.
    H. Beck and D. Straus, Helvetica Physica Acta 48, 655 (1975).Google Scholar
  53. 39.
    This is the range typically given for the Lindemann ratio in the case of melting due to thermal motion. The ratio is generally presumed to be independent of structure. However, Shapiro has recently suggested that fm is in fact structure dependent with values of about 0.12 and 0.20 for fcc and bcc lattices respectively (again for classical melting). (J.N. Shapiro, Phys. Rev. B1, 3982 (1970). Note that his δf is smaller than our fm by a factor of 1/ √3]. The structure dependence is not an issue in the present discussion of classical vs. zero-point melting as the calculations cited in Refs. 9, 25, 40–42 are all for the fcc phase.Google Scholar
  54. 40.
    W.G. Hoover, S.G. Gray and K.W. Johnson, J. Chem. Phys. 55, 1128 (1971).CrossRefGoogle Scholar
  55. 41.
    D. Ceperley, G.V. Chester and M.H. Kalos, “A Monte Carlo Study of the Ground State of Bosons Interacting with Yukawa Poten — tials”, “Monte Carlo Simulation of a Many Fermion System”, (preprints, May 1977).Google Scholar
  56. 42.
    J.-P. Hansen, D. Levesque and D. Schiff, Phys. Rev. A3, 776 (1971).Google Scholar
  57. 43.
    E.E. Salpeter, Phys. Rev. Lett. 28, 560 (1972).CrossRefGoogle Scholar
  58. 44.
    N.W. Ashcroft (private communication).Google Scholar
  59. 45.
    J.F. Dobson and N.W. Ashcroft, “Einstein-Kanzaki Model of Static and Dynamic Lattice Relaxation: Application to Vacancies in Metallic Hydrogen” (preprint, December 1976).Google Scholar
  60. 46.
    G.F. Chapline Jr., Phys. Rev. B6, 2067 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • A. K. McMahan
    • 1
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations