Advertisement

Pathophysiology of Cerebral Ischemia

  • K.-A. Hossmann

Abstract

The limiting factor for the reanimation of organisms following cardio-circulatory arrest is, in general, the anoxic vulnerability of the brain. The misrelationship between energy consumption and energy production is the reason for the high sensitivity of the brain. The brain has a high metabolic activity even under rest conditions: cerebral blood flow is about 50 ml/100 g/min, and oxygen consumption more than 3 ml/100 g/min. Brain energy requirements are approximately 8 cal/100 g/min, and are covered almost exclusively by oxidation of glucose which has to be continuously transported from the circulating blood into the brain.

Keywords

Cerebral Blood Flow Cerebral Ischemia Revival Time Total Ischemia Barbiturate Anaesthesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames III A., Wright, R.L., Kowada, M., Thurston, J. M. and Majno, G. (1968): Cerebral ischemia. II. The no-reflow phenomenon. Am. J. Path. 52: 437–453.PubMedGoogle Scholar
  2. 2.
    Anderson, R.E., Waltz, A.G., Yamaguchi, T. and Ostrom, R.D. (1970): Assessment of cerebral circulation (cortical blood flow) with an infrared microscope. Stroke 1: 100–103.PubMedCrossRefGoogle Scholar
  3. 3.
    Bito, L.Z. and Myers, R.E (1972): On the physiological response of the cerebral cortex to acute stress (reversible asphyxia). J. Physiology 221: 349–370.Google Scholar
  4. 4.
    Bleyaert, A.L., Nemoto, E.M., Stezoski, S.W., Alexander, H. and Safar, P. (1975): Amelioration of post-ischemic encephalopathy by sodium thiopental after 16 minutes of global brain ischemia in monkeys. Physiologist 18: 145.Google Scholar
  5. 5.
    Carlsson, C., Hägerdal, M., and Siesjö, B.K. (1976): The effect of hyperthermia upon oxygen consumption and upon organic phosphates, glycolytic metabolites, citric acid cycle intermediates and associated amino acids in rat cerebral cortex. J. Neurochem. 26: 1001–1006.PubMedCrossRefGoogle Scholar
  6. 6.
    Chiang, J., Kowada, M., Ames II A., Wright, R.L. and Majno, G. (1968): Cerebral ischemia. III. Vascular changes. Am. J. Pathol. 52: 455–476.PubMedGoogle Scholar
  7. 7.
    Cohen, P.J. (1972): The metabolic function of oxygen and biochemical lesions of hypoxia. Anesthesiology. 37: 148–177.PubMedCrossRefGoogle Scholar
  8. 8.
    Cooper, E.K., Zalewska, T., Kawakami, S., Hossmann, K.-A. and Kleinhues, P. (1977): The effect of ischemia and recirculation on protein synthesis in the rat brain. J. Neurochem. 28: 929–934.PubMedCrossRefGoogle Scholar
  9. 9.
    Cucchiara, R.F. and Michenfelder, J.D. (1973): The effect of interruption of the reticular activating system on metabolism in canine cerebral hemispheres before and after thiopental. Anesthesiology 39: 3–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Demopoulos, H.B., Flamm, E.S., Seligman, M.L., Jor-gensen, E. and Ransohoff, J. (1977): Antioxidant effects of barbiturates in model membranes undergoing free radical damage. Acta Neurologica Scand. 56. Suppl. 64: 152–153.Google Scholar
  11. 11.
    Fischer, E.G. (1973): Impaired perfusion following cerebro-vascular stasis. A review. Arch. Neurol. 29: 361–366.CrossRefGoogle Scholar
  12. 12.
    Gänshirt, H. und Zylka, W. (1952): Die Erholungszeit am Wärmeblütergehirn nach kompletter Ischämie. Arch. Psychiat. Nervenkr. 189: 23–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Grenell, R.G. (1946): Central nervous system resistance. I. The effects of temporary arrest of cerebral circulation for periods of two to ten minutes. J. Neuropath. Exp. Neurol. 5: 131–154.PubMedCrossRefGoogle Scholar
  14. 14.
    Hägerdal, M., Karp, J., Nilsson, L., and Siesjö, B.K. (1975): The effect of induced hypothermia upon oxygen consumption in the rat brain. J. Neurochem. 24: 311–316.PubMedCrossRefGoogle Scholar
  15. 15.
    Häggendal, E., Löfgren, J., Nilsson, N.J. and Zwetnow, N.N. (1970): Prolonged cerebral hyperemia after periods of increased cerebrospinal fluid pressure in dogs. Acta physiol. Scand. 79: 272–279.PubMedCrossRefGoogle Scholar
  16. 16.
    Hallenbeck, J.M. (1977): Prevention of postischemic impairment of microvascular perfusion. Neurology 27: 3–10.PubMedGoogle Scholar
  17. 17.
    Van Karreveld, A. (1947): The electroencephalogram after prolonged brain asphyxiation. J. Neurophysiol. 10: 361–370.Google Scholar
  18. 18.
    Heilbrun, H.P. and Goldring, S. (1968): Steady potential and pathological correlates of cerebrovascular occlusion of dog. Arch. Neurol. 19: 410–420.PubMedCrossRefGoogle Scholar
  19. 19.
    Hinzen, D.H., Müller, U., Sobotka, P., Gebert, E., Lang, R. and Hirsch, H. (1972): Metabolism and function of dog’s brain recovering from longtime ischemia. Amer. J. Physiol. 223: 1158–1164.PubMedGoogle Scholar
  20. 20.
    Hirsch, H., Bange, F., Pulver, G. and Steffens, J. (1960): Evoked responses of the cat’s visual cortex to optic tract stimulation at temperatures between 39° and 15°C. Electroencephal. Clin. Neurophysiol. 12: 679–684.CrossRefGoogle Scholar
  21. 21.
    Hirsch, H., Boite, A., Schaudig, A. und Tönnis, D. (1957): Ober die Wiederbelebung des Gehirnes bei Hypothermie. Pflügers Arch. ges. Physiol. 265: 328–336.CrossRefGoogle Scholar
  22. 22.
    Hirsch, H., Breuer, M., Künzel, H.P., Marx, E. und Sachweh, D. (1964): Über die Bildung von Thrombozyten-aggregaten und die Änderung des Hämatokrits durch komplette Gehirnischämie. Dtsch. Z. Nervenheilk. 168: 58–66.Google Scholar
  23. 23.
    Hirsch, H., Euler, K.H. und Schneider, M. (1957): Ober die Erholung und Wiederbelebung des Gehirnes nach Ischämie bei Normothermie. Pflügers Arch. ges. Physiol. 265: 281–313.CrossRefGoogle Scholar
  24. 24.
    Hirsch, H., Koch, D., Krenkel, W. und Schneider, M. (1955): Die Erholungslatenz des Warmebltergehirns bei Ischämie und die Bedeutung des Restkreislaufes. Pflügers Arch. ges. Physiol. 261: 392–401.CrossRefGoogle Scholar
  25. 25.
    Hoff, J.T., Smith, A.L., Hankinson, H.L. and Nielsen, S.L. (1975): Barbiturate protection from cerebral infarction in primates. Stroke 6: 28–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Hossmann, K.-A. (1971): Cortical steady potential, impedance and excitability changes during and after total ischemia of cat brain. Experimental Neurology 32: 163–175.PubMedCrossRefGoogle Scholar
  27. 27.
    Hossmann, K.-A. and Hossmann, V. (1977): Coagulopathy following experimental cerebral ischemia. Stroke 8: 249–254.PubMedCrossRefGoogle Scholar
  28. 28.
    Hossmann, K.-A. and Kleihues, P. (1973): Reversibility of ischemic brain damage. Arch. Neurol. 29: 375–384.PubMedCrossRefGoogle Scholar
  29. 29.
    Hossmann, K.-A., Lechtape-Gruter, E. and Hossmann, V. (1973): The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z. Neurol. 204: 201–299.CrossRefGoogle Scholar
  30. 30.
    Hossmann, K.-A., Sakai, S. and Zimmermann, V. (1976): Cation activities in reversible ischemia of the cat brain. Stroke 8: 77–81.CrossRefGoogle Scholar
  31. 31.
    Kossmann, K.-A., and Sato, K. (1971): Effect of ischemia on the function of the sensorimotor cortex in cat. Electroencephal. Clin. Neurophysiol. 30: 535–545.CrossRefGoogle Scholar
  32. 32.
    Hossmann, K.-A. and Takagi, S. (1976): Osmolality of brain in cerebral ischemia. Exp. Neurology 51: 124–131.CrossRefGoogle Scholar
  33. 33.
    Hossmann, K.-A. and Zimmermann, V. (1974): Resuscitation of the monkey brain after 1 h complete ischemia. I. Physiological and morphological observations. Brain Res. 81: 59–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Kleinhues, P. and Hossmann, K.-A. (1973): Regional incorporation of L-(3- H)-tyrosine into cat brain proteins after 1 hour of complete ischemia. Acta Neuropath. 25: 313–324.CrossRefGoogle Scholar
  35. 35.
    Kleinhues, P., Kobayashi, K. and Hossmann, K.-A. (1974): Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J. Neurochem. 23: 417–425.CrossRefGoogle Scholar
  36. 36.
    Ljunggren, B., Ratcheson, R.A. and Siesjö, B.K. (1974): Cerebral metabolic state following complete compression ischemia. Brain Res. 73: 291–307.PubMedCrossRefGoogle Scholar
  37. 37.
    Ljunggren, B., Schutz, H. and Siesjö, B.K. (1974): Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res. 73: 277–289.PubMedCrossRefGoogle Scholar
  38. 38.
    Lowry, O.K., Passonneau, J.V., Hasselberger, F.X. and Schulz, D.W. (1964): Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239: 18–30.PubMedGoogle Scholar
  39. 39.
    Marshall, L.F., Durity, F., Lounsbury, R., Graham, D. I., Welsh, F. and Langfitt, T.W. (1975): Experimental cerebral oligemia and ischemia produced by intracranial hypertension. I. Pathophysiology, electroenceph-alography, cerebral blood flow, blood brain barrier and neurological function. J. Neurosurg. 43: 303–317.Google Scholar
  40. 40.
    Matakas, F., Cervos-Navarro, J. and Schneider, H. (1973): Experimental brain death. I. Morphology and fine structure of the brain. J. Neurol. Neurosurg. Psychiatr. 36: 497–508.PubMedCrossRefGoogle Scholar
  41. 41.
    Michenfelder, J.D., Milde, J.H. and Sundt, T.M. (1976): Cerebral protection by barbiturate anaesthesia use after middle artery occlusion in Java monkeys. Arch. Neurol. 33: 345–350.PubMedCrossRefGoogle Scholar
  42. 42.
    Michenfelder, J.D., and Theye, R. (1973): Cerebral protection by thiopental during hypoxia. Anesthesiology 39: 510–517.PubMedCrossRefGoogle Scholar
  43. 43.
    Miller, J.R. and Myers, R.E. (1970): Neurological effects of systemic circulatory arrest in the monkey. Neurology 20: 715–724.PubMedGoogle Scholar
  44. 44.
    Neely, W.A. and Youmans, J.R. (1963): Anoxia of canine brain without damage. JAMA 133: 1085–1087.CrossRefGoogle Scholar
  45. 45.
    Nemoto, E.M., Kofke, W.A., Kessler, P., Hossmann, K.-A., Stezoski, S.W. and Safar, P. (1977): Studies on the pathogenesis of ischemic brain damage and the mechanism of its amelioration by thiopental. Acta Neurol. Scand. 56, Suppl. 64: 142–145.Google Scholar
  46. 46.
    Nemoto, E.M., Snyder, J.V., Carroll, R.G. and Morita, K. (1975): Global ischemia in dogs: Cerebrovascular CO2 reactivity and autoregulation. Stroke 6: 425–431.PubMedCrossRefGoogle Scholar
  47. 47.
    Nilsson, L. (1971): The influence of barbiturate anaesthesia upon the energy state and upon acid-base parameters of the brain in arterial hypotension and asphyxia. Acta Neurol. Scand. 47: 233–253.PubMedCrossRefGoogle Scholar
  48. 48.
    Nordstrom, C.-K., Rehncrona, S. and Siesjö, B.K. Effects of phenobarbital in cerebral ischemia. 2. Restitution of cerebral energy state as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after pronounced, incomplete ischemia. Stroke (in press).Google Scholar
  49. 49.
    Sainio, K. (1974): Computer analysis of rabbit EEG after cerebral ischemia. Electroencephal. Clin. Neurophysiol. 36: 471–479.CrossRefGoogle Scholar
  50. 50.
    Sobotka, F., Gebert, E. and Lang, R. (1972): The utilization of oxygen in the brain after complete ischemia. Physiol. Bohemoslav. 21: 436.Google Scholar
  51. 51.
    Sobotka, P. and Hinzen, D.H. (1973): Effect of complete cerebral ischemia on brain phospholipid metabolism. Act. Nervosa Superior 15: 28.Google Scholar
  52. 52.
    Strumza, M.-V., Migne, J. et Maupin, B. (1970): Effets rapides de l’hypoxie sur certains facteurs de la coagulation sanguine et de la fibrinolyse. C.R. Soc. Biol. 164: 962–966.Google Scholar
  53. 53.
    Sturm, K.W., Wenzel, E., Tamaska, L. and Holzhüter, H. (1974): Comparative study of neuropathological findings and coagulation parameters in disseminated intravascular coagulation. In: Pathology of Cerebral Microcirculation (J. Cervos-Navarro, Ed.), De Gruyter Berlin-New York, 419–424.Google Scholar
  54. 54.
    Sugar, O. and Gerard, R.W. (1938): Anoxia and brain potentials. J. Neurophysiol. 1: 558–572.Google Scholar
  55. 55.
    Wilhjelm, B. (1966): Protective action of anaesthetics against anoxia. Acta Amaesth. Sand. Suppl. 25: 318–321.Google Scholar
  56. 56.
    Wolin, L.R. and Massopust, L.C. Jr. (1972): Behavioral effects of arrest of cerebral circulation in the Rhesus monkey. Exp. Neurol. 34: 323–330.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • K.-A. Hossmann
    • 1
  1. 1.Max-Planck-Institut für HirnforschungCologne-MerheimW. Germany

Personalised recommendations