Some Biochemical Aspects of Electroconvulsive Seizure

  • Lj. Rakić
  • R. Mileusnić
  • Lj. Rogač
  • R. Veskov


Among experimental procedures used in neurochemical research on seizure, electroconvulsive shock (ECS) has been the object of numerous and extensive studies (29, 52, 57, 89, 95). The seizure, as a general expression of the sudden onset of an intense, rapidly repetitive focal or generalized electrical discharge in the brain, is not only the expression of epilepsy as prototypical disease, but also a common symptom of numerous neurological diseases. Experimentally, it can be induced by different methods. Past neurochemical studies of convulsions induced by different methods categorically refute the existence of a single chemical agent which triggers the abnormal electrical discharge with consequent behavioral manifestations in all cases, although the electrical and behavioral manifestations in convulsions caused by different mechanisms are very similar in their general pattern of expression. Measurements of biochemical parameters in convulsions are mainly limited to the phenomena accompanying or following convulsive attacks. ECS has been used as a model for different neurobiological studies (e.g., excitation, convulsions, stress, affective behavior, learning and memory, sleep) with the intention of interpreting its central effects.


ATPase Activity Brain Parenchyma AChE Activity Retrograde Amnesia Biochemical Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, H.E., Hoblit, P.R. and Sutker, P.B. (1969): Electroconvulsive shock, brain acetylcholinesterase activity and memory. Physiol. Behav. 4: 113–116.CrossRefGoogle Scholar
  2. 2.
    Aird, R.B. (1958): Clinical correlates of electroshock therapy. Arch. Neurol. Psychiatry 79: 633–639.Google Scholar
  3. 3.
    Aird, R.B. and Strait L. (1944): Protective barriers in the central nervous system: An experimental study of trypanred. Arch. Neurol. Psychiatry 51: 54–66.Google Scholar
  4. 4.
    Angel, C. and Roberts, A.J. (1966): Effect of electro-shock and anti-depressant drugs on cerebrovascular permeability to cocaine in the rat. J. Nerv. Ment. Dis. 142: 376–380.PubMedCrossRefGoogle Scholar
  5. 5.
    Banks, P., Mayor, D., Mitchell, M. and Tomlinson, O. (1971): Studies on the translocation of noradrenaline-containing vesicles in post-ganglionic sympathetic neurons in vitro. Inhibition of movement by colchicine and vinblastine and evidence for involvement of axonal microtubules. J. Physiol. 216: 625–639.PubMedGoogle Scholar
  6. 6.
    Bazán, N.G. (1971): Changes in free fatty acids of brain by drug-induced convulsions. Electroshock and anaesthetic. J. Neurochem. 18: 1379–1385.PubMedCrossRefGoogle Scholar
  7. 7.
    Bjerner, B., Broman, T. and Swenson, A. (1944): Tierexperimentelle Untersuchungen über Schädigungen der Gefässe mit Permeabilitätsstörungen und Blutengen im Gehirn bei Insulin, Cardiazol und Elektroschockbehandlung. Acta Psychiat. Neurol. Scand. 19: 431–452.CrossRefGoogle Scholar
  8. 8.
    Blachly, P.H. and Gowing, D. (1966): Multiple electroconvulsive treatment. Comprehensive Psychiatry 7: 100–109.CrossRefGoogle Scholar
  9. 9.
    Bonting, S.L., Simon, K.A. and Howkins, N.M. (1961): Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch. Biochem. Biophys. 95: 417–423.CrossRefGoogle Scholar
  10. 10.
    Brajan, J. and Wilson, L. (1971): Are cytoplasmic microtubules heteropolymers? Proc. Natl. Acad. Sci. U.S.A. 1762–1977.Google Scholar
  11. 11.
    Brennan, R.W., Petito, K.C. and Porro, R.S. (1972): Single seizures cause no ultastructural changes in brain. Brain Res. 45: 574–579.PubMedCrossRefGoogle Scholar
  12. 12.
    Cavanagh, J.B. and Thomson, R.H.S. (1954): Demyelination. Brit. Med. Bull. 10: 47–51.PubMedGoogle Scholar
  13. 13.
    Clark, G. and Sarkaria, D.S. (1958): Acid fuchsin convulsions and electroshock in the mouse. J. Neuropathol. Exp. Neurol. 17: 612–619.PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen, H.B., Duncan, R.F. and Dement, W.C. (1967): Sleep: The effect of electroconvulsive shock in cats deprived of REM sleep. Science 156: 1646–1648.PubMedCrossRefGoogle Scholar
  15. 15.
    Cotman, C.W., Banker, G., Zornetzer, S.F. and McGaugh, J. (1971): Electroshock effects on brain protein synthesis: Relation to brain seizures and retrograde amnesia. Science 173: 454–456.PubMedCrossRefGoogle Scholar
  16. 16.
    Crone, C. (1965): Facilitated transfer of glucose from blood to brain. J. Physiol. (London) 181: 103–113.Google Scholar
  17. 17.
    Dahlström, A. (1971): Axoplasmatic transport with particular respect to adrenergic neurons. Physiol. Trans. R. Soc. London (Biol.) 261: 325–358.CrossRefGoogle Scholar
  18. 18.
    Dawson, R.M.C. and Richter, D. (1950): Effect of stimulation of the phosphate esters of the brain. Am. J. Physiol. 160: 203–211.PubMedGoogle Scholar
  19. 19.
    DeRobertis, E., Alberic, M. and Delores-Arnaiz, G.R. (1969): Astroglial swelling and phosphohydrolases in cerebral cortex of metrazol convulsant rat. Brain Res. 12: 461–466.CrossRefGoogle Scholar
  20. 20.
    Djuričić, B.M., Rogač, Lj., Spatz, M., Rakić, Lj. and Mršulja, B.B. (1977): Brain microvessels. I. Enzymic activities. In: Pathology of Cerebrospinal Microcirculation, J. Cervos-Navarro, E. Betz, and R. Wüllenweber (eds.), pp. 197–205, Raven Press, New York.Google Scholar
  21. 21.
    Dorfmann, L.J. and Jarvik, M.E. (1968): A parametric study of electroshock-induced retrograde amnesia in mice. Neuropsychology 6: 373–380.CrossRefGoogle Scholar
  22. 22.
    Dornbush, R.L. (1973): Memory and induced ECT convulsions. Semin. Psychiatry 4: 47–54.Google Scholar
  23. 23.
    Duffy, T.E., Howse, D.C. and Plum, F. (1975): Cerebral energy metabolism during experimental status epilepticus. J. Neurochem. 24: 925–934.PubMedCrossRefGoogle Scholar
  24. 24.
    Dunn, A. (1971): Brain protein synthesis after electroshock. Brain Res. 35: 254–259.PubMedCrossRefGoogle Scholar
  25. 25.
    Dunn, A. (1973): The dependence of brain ATP content on cerebral electroshock current. Brain Res. 61: 442–445.PubMedCrossRefGoogle Scholar
  26. 26.
    Dunn, A., Guiditta, A., Wilson, J.E. and Glassman, E. (1974): The effect of electroshock on brain RNA and protein synthesis and its possible relationship to behavioral effects. In: Psychobiology of Convulsive Therapy, M. Fink, S. Kety, J. McGaugh and T.A. Willams, (eds.), pp. 185–197, V.A. Winston and Sons, Washington, D.C.Google Scholar
  27. 27.
    Essman, W.B. (1972): Neurochemical changes in ECS and ECT. Semin. Psychiatry 4: 67–77.PubMedGoogle Scholar
  28. 28.
    Essman, W.B., Baker, L.A. and Keller, A. (1972): Alterations of cholinergic neurons with electroconvulsive shock. Fed. Proc. 31: 249.Google Scholar
  29. 29.
    Essman, W.B. (1973): Neurochemistry of Cerebral Electroshock. Spectrum Publ., Flushing, New York.Google Scholar
  30. 30.
    Essman, W.B. (1973): Neuromolecular modification of experimental-induced retrograde amnesia. Confina Neurol. 35: 1–22.CrossRefGoogle Scholar
  31. 31.
    Feit, H. and Barondes, S.H. (1970): Colchicine-binding activity in particulate fractions of mouse brain. J. Neurochem. 17: 1355–1367.PubMedCrossRefGoogle Scholar
  32. 32.
    Ferrendelli, J.A. and McDougal, D.B., Jr. (1971): The effect of electroshock on regional CNS energy reserves in mice. J. Neurochem. 18: 1197–1205.PubMedCrossRefGoogle Scholar
  33. 33.
    Giacobini, E. (1964): Metabolic relationship between glia and neurons studied in single cells. In: Morphological and Biochemical Correlates of Neuronal Activity, M.M. Cohen and R.S. Snider (eds.), pp. 15–56, Harper and Row, New York.Google Scholar
  34. 34.
    Gibbons, I.R. (1966): Studies on the adenosine-triphosphatase activity of 14S and 30s dynein from cilia of Tetrahymena. J. Biol. Chem. 241: 5590–5596.PubMedGoogle Scholar
  35. 35.
    Gillespie E. (1971): Colchicine binding in tissue slices: decrease by calcium and biphasic effect of A-3’,5’-monophosphate. J. Cell Biol. 50: 544–551.PubMedCrossRefGoogle Scholar
  36. 36.
    Goldstein, G.W., Wolinski, J.S., Csejey, J. and Diamond, I. (1975): Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25: 715–717.PubMedCrossRefGoogle Scholar
  37. 37.
    Gozsy, B., Kato, L., Roy, P.B., Grog, V. and Lallonde, M. (1965): Investigations into the mechanism of electroconvulsive shock; part I. Int. J. Neuropsychiatry 1: 623–625.PubMedGoogle Scholar
  38. 38.
    Greig, M.E. and Mayberry, T.C. (1951): The relationship between Cholinesterase activity and brain permeability. J. Pharmacol. 102: 1–4.Google Scholar
  39. 39.
    Greig, M.E. and Holland, W.C. (1949): Increased permeability of hemoencephalic barrier produced by physo-stigmine and acetylcholine. Science 110: 237–238.PubMedCrossRefGoogle Scholar
  40. 40.
    Greig, M.E., Holland, W.C. and Mayberry, T.C. (1951): The relationship between Cholinesterase activity arid brain permeability. J. Pharmacol. Exp. Therap. 102: 1–4.Google Scholar
  41. 41.
    Howse, D.C., Caronna, J.J., Diffy, T.E. and Plum, F. (1974): Cerebral energy metabolism, pH, and blood flow during seizure in the cat. Am. J. Physiol. 227: 1444–1451.PubMedGoogle Scholar
  42. 42.
    Iuvone, M.P., Boast, C.A., Gray, H.E. and Dunn, A. (1977): Pentylentetrazol: Inhibitory avoidance behavior, brain seizure activity and 3H-lysine incorporation into brain proteins of different mouse strains. Behav. Biol. 21: 236–250.PubMedCrossRefGoogle Scholar
  43. 43.
    James, K.A.C., Bray, J.J., Morgan, I.G. and Austin, L. (1970): The effect of colchicine on the transport of axonal protein in the chicken. Biochem. J. 117: 767–771.PubMedGoogle Scholar
  44. 44.
    Joó, F. and Csillik, B. (1966): Topographical correlation between the hematoencephalic barrier and the Cholinesterase activity of brain capillaries. Exp. Brain Res. 1: 147–151.PubMedCrossRefGoogle Scholar
  45. 45.
    Joó, F. and Várkonyi, T. (1969): Correlation between the Cholinesterase activity and capillaries and the blood-brain barrier in the rat. Acta Biol. Acad. Sci. Hung. 20: 359–372.PubMedGoogle Scholar
  46. 46.
    Kety, S.S., Javoy, F., Thierry, A.M., Julon, L. and Glowinski, J. (1967): A sustained effect of electroconvulsive shock turnover of norepinephrine in the central nervous system of the rat. Proc. Natl. Acad. Sci. U.S.A. 58: 1249–1254.PubMedCrossRefGoogle Scholar
  47. 47.
    King L.J., Lwory, O.H., Passonneau, J.V. and Venson, V.V. (1967): Effects of convulsants on energy reserves in the cerebral cortex. J. Neurochem. 14: 599–611.PubMedCrossRefGoogle Scholar
  48. 48.
    King, L.J., Schoepffe, G.M., Passonneau, J.V. and Wilson, S. (1967): Effect of electrical stimulation on metabolites in brain of decapitated mice. J. Neurochem. 14: 613–618.PubMedCrossRefGoogle Scholar
  49. 49.
    King, L.J., Welb, O.L. and Carl, J. (1970): Effects of duration of convulsions on energy reserves of the brain. J. Neurochem. 17: 13–18.PubMedCrossRefGoogle Scholar
  50. 50.
    Koella, G. (1954): The histochemical localization of Cholinesterase in the central nervous system of the rat. J. Comp. Neurol. 100: 211–228.CrossRefGoogle Scholar
  51. 51.
    Kreutzberg, G.W. (1969): Neuronal dynamic and axonal flow. IV. Blockade of intra-axonal enzyme transport by colchicine. Proc. Natl. Acad. Sci. U.S.A. 62: 722–728.PubMedCrossRefGoogle Scholar
  52. 52.
    Kriendler, A. (1965): Biochemical aspects of the seizure in convulsive disorder. In: Progress in Brain Research. Elsevier, Amsterdam, 19: 168–181.Google Scholar
  53. 53.
    Ladish, W., Steinhauff, N. and Matussek, N. (1969): Chronic administration of electroconvulsive shock and norepinephrine metabolism in the rat. Psychopharmacology 15: 296–304.CrossRefGoogle Scholar
  54. 54.
    Laemmli, U.K. and Favre, M. (1973): Maturation of the head of bacteriophage T4. I. DNA packing events. J. Mol. Biol. 80: 575–599.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee, J.C. and Olszewski, J. (1961): Increased cerebrovascular permeability after repeated electroshock. Am. J. Psychiatry 104: 765–770.Google Scholar
  56. 56.
    Lee-Teng, E. (1969): Retrograde amnesia in relation to subconvulsive and convulsive current in the chick. J. Comp. Physiol. Psychol. 67: 135–139.PubMedCrossRefGoogle Scholar
  57. 57.
    Lovell, R.A. (1971): Some neurochemical aspects of convulsion. In: Handbook of Neurochemistry. A. Lajtha (ed.), Plenum Press, New York, 6: 63–102.Google Scholar
  58. 58.
    Lowry, O.H. and Passonneau, J.V. (1964): The relationship between substrate and enzyme of glycolysis in brain. J. Biol. Chem. 239: 39–42.Google Scholar
  59. 59.
    Lust, W.D. and Passonneau, J.V. (1976): Cyclic nucleotides in murine brain: Effect of hypothermia on adenosine 3’,5’-monophosphate, glycogen and Phosphorylase glycogen synthesis and metabolites following maximal electroshock or decapitation. J. Neurochem. 26: 11–16.PubMedCrossRefGoogle Scholar
  60. 60.
    McDonnell, P.C. and Greengard, O. (1974): Enzymes in intracellular organelles of adult and developing rat brain. Arch. Biochem. Biophys. 163: 644–649.CrossRefGoogle Scholar
  61. 61.
    McGaugh/ J.L. (1968): Electroconvulsive shock. Int. Encycl. Soc. Sc. 5: 21–25.Google Scholar
  62. 62.
    McGaugh, J.M. (1974): Electroconvulsive shock: Effects on learning and memory in animals. In: Psychobiology of Convulsive Therapy, M. Fink, S. Kety, J. McGaugh and T.A. Williams (eds.), pp. 85–97, V.H. Winston and Sons, Washington, D.C.Google Scholar
  63. 63.
    Mcllwain, H. (1963): Chemical Exploration of the Brain. A Study of Cerebral Excitability and Ion Movement. Elsevier, Amsterdam.Google Scholar
  64. 64.
    Milligan, W.L. (1946): Psychoneurosis treated with electrical convulsions. Lancet 215: 516–520.CrossRefGoogle Scholar
  65. 65.
    Minard, F.N. and Davis, R.V. (1962): The effects of electroshock on the acid-soluble phosphates of rat brain. J. Biol. Chem. 237: 1283–1289.Google Scholar
  66. 66.
    Mrsulja, B.B., Djuricic, B.J., Mrsulja, B.J., Rogac, Lj., Spatz, M. and Klatzo, I. (1977): Brain micro-vessels II. The effect of ischemia and dehydroergo-toxine on the enzymic activity. In: Pathology of Cerebrospinal Microcirculation, J. Cerrvos-Navarro, E. Betz, and R. Wüllenweber (eds.), pp. 207–213, Raven Press, New York.Google Scholar
  67. 67.
    Mrsulja, B.B., Mrsulja, B.J., Fujimoto, T. and Klatzo, I. (1976): Isolation of brain capillaries: a simplified technique. Brain Res. 110: 361–365.PubMedCrossRefGoogle Scholar
  68. 68.
    Mussacchio, J.M., Juon, L., Kety, S.S. and Glowinski, J. (1969): Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock. Proc. Natl. Acad. Sci. U.S.A. 63: 1117–1119.CrossRefGoogle Scholar
  69. 69.
    Nachmansson, D. (1959): Chemical and Molecular Basis of Nerve Activity. Academic Press, New York.Google Scholar
  70. 70.
    Nathanson, J.A. and Greengaard, P. (1976): Cyclic nucleotides and synaptic transmission. In: Basic Neurochemistry, G.J. Siegel, R.W. Albers, R. Katzman and B.W. Agranoff (eds.), pp. 246–262, Little, Brown, Boston.Google Scholar
  71. 71.
    Ocks, S. (1975): Axoplasmatic transport. In: The Nervous System, D.B. Tower (ed. in chief), Vol. 1, The Basic Neurosciences, R.O. Brady (ed.), pp. 137–146, Raven Press, New York.Google Scholar
  72. 72.
    Oldendorf, W.H. (1971): Brain uptake of radiolabeled amino-acids, amine and hexose after arterial injection. Am. J. Physiol. 221: 1629–1639.PubMedGoogle Scholar
  73. 73.
    Ottoson, J.O. (1968): Psychological or physiological theories of ECT. Int. J. Psychiatry 5: 170–174.Google Scholar
  74. 74.
    Plumm, F., Posner, J.B. and Troy, B. (1968): Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch. Neruol. 18: 1–13.CrossRefGoogle Scholar
  75. 75.
    Pogodaev, K.I. (1964): Biochimia Epilepticheskovo Pristupa. Medicina, Moscow.Google Scholar
  76. 76.
    Pryor, G.T. and Otis, L.S. (1969): Brain biochemical and behavioural effects of 1, 2, 4 or 8 weeks electro-shock treatment. Life Sci. 8: 387–399.PubMedCrossRefGoogle Scholar
  77. 77.
    Pryor, G.T. (1974): Effect of repeated ECS on brain weight and brain enzymes. In: Psychobiology of Convulsive Therapy, M. Fink, S. Kety, J. McGaugh and T.A. Williams (eds.), pp. 185–197, V.H. Winston and Sons, Washington, D.C.Google Scholar
  78. 78.
    Rakic, Lj.M., Buchwald, N.A. and Wyers, E.Y. (1962): Induction of seizures by stimulation of the caudate nucleus. EEG Clin. Neurophysiol. 14: 809.CrossRefGoogle Scholar
  79. 79.
    Rakic, Lj.M. (1966): Cortical inhibition and subcortical inhibitory influences. In: Impact of Basic Science on Medicine, B. Shapiro and M. Prywes (eds.), pp. 298–305, Academic Press, New York, London.Google Scholar
  80. 80.
    Ray, O.S. and Barrett, R.J. (1969): Disruptive effects of electroconvulsive shock as a function of current levels and mode of delivery. J. Comp. Physiol. Psychol. 67: 110–116.CrossRefGoogle Scholar
  81. 81.
    Rose, S.P.J., Sinha, A.K. and Jones-Lecointe, A. (1976) Synthesis of tubulin-enriched fraction in rat visual cortex is modulated by dark-rearing and light-exposure. FEBS Lett. 65.2: 135–139.PubMedCrossRefGoogle Scholar
  82. 82.
    Rosenblatt, S., Chanley, J.D., Sobotka, H. and Kaufman, M.R. (1960): Interrelationship between electroshock, the blood-brain barrier and catecholamines. J. Neurochem. 5: 172–176.PubMedCrossRefGoogle Scholar
  83. 83.
    Seiler, N. (1969): Enzymes. In: Handbook of Neurochem istry. Vol. I: Chemical Architecture of the Nervous System, A. Lajtha (ed.), pp. 325–468, Plenum Press, New York.Google Scholar
  84. 84.
    Seite, R., Noel, M. and Vuillet-Luciani, J. (1973): Effect of electrical stimulation on nuclear microfilaments and microtubules of sympathetic neurons submitted to cycloheximide. Brain Res. 50: 419–423.PubMedCrossRefGoogle Scholar
  85. 85.
    Silver, A. (1974): The Biology of Cholinesterase. North Holland Publ. Co., Amsterdam.Google Scholar
  86. 86.
    Shelanski, M.L. (1973): Microtubules. In: Proteins of the Nervous System, D.J. Schneider (ed.), pp. 227–241, Raven Press, New York.Google Scholar
  87. 87.
    Smallman, B.N. and Pal, R. (1957): The activity of intracellular distribution of choline acetylase in insect nervous tissue. Bul. Entomol. Soc. Amer. 8: 25Google Scholar
  88. 88.
    Sokoloff, L. (1969): Cerebral blood flow and energy metabolism. In: Basic Mechanisms of the Epilepsies, H.H. Jasper, A.A. Ward and A. Pope (eds.), pp. 639–646, Little, Brown, Boston.Google Scholar
  89. 89.
    Tower, D.B. (1960): Neurochemistry of Epilepsy. C.C. Thomas, Springfield, Illinois.Google Scholar
  90. 90.
    Van Buskirk, R. and McGaugh, J.L. (1974): Pentylenetetrazol-induced retrograde amnesia and brain seizure in mice. Psychopharmacology 40: 77–90.CrossRefGoogle Scholar
  91. 91.
    Vinitsky, I.M. and Abuladze, G.V. (1971): Retrogradnaya amneziya vyzyvemaya karazolom na fone destviya narkoza. Zh. Vyssh. Ner. Deyatel. Im. I.P. Pavlova 21: 572–575.Google Scholar
  92. 92.
    Weisenberg, R.C., Borrisy, G.G. and Taylor, E.W. (1968): The colchicine binding protein in mammalian brain and its relation to microtubules. Biochemistry 7: 4466–4479.PubMedCrossRefGoogle Scholar
  93. 93.
    Weisenberg, R.C. and Timasheff, S.F. (1970): Aggregation of microtubule subunit protein. Effect of divalent cations, colchicine and vinblastine. Biochemistry 9: 4110–4116.PubMedCrossRefGoogle Scholar
  94. 94.
    White, A., Handler, P. and Smith, E.L. (1973): Principles of Biochemistry. McGraw-Hill, New York; Kogakusha, Ltd., Tokyo.Google Scholar
  95. 95.
    Wolfe, L.C. and Elliott, K.A.A. (1962): Chemical studies in relation to convulsive conditions. In: Neurochemistry, K.A.C. Elliott, J.H. Page and J.H. Quastel (eds.), pp. 694–727, C.C. Thomas, Springfield, Illinois.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Lj. Rakić
    • 1
  • R. Mileusnić
    • 1
  • Lj. Rogač
    • 1
  • R. Veskov
    • 1
  1. 1.Institute of BiochemistryFaculty of Medicine and Institute for Biological ResearchBelgradeYugoslavia

Personalised recommendations