Energy Metabolism in Focal Seizures

  • W. F. Caveness


The present day concept of Epilepsy has evolved from astute clinical observations and painstaking laboratory investigations. Flashes of insight have been separated by long periods of unimaginative thinking. Hippocrates taught in 400 B.C. that “if a man be struck on one side of the head, he may develop convulsions on the opposite side of the body” (26). This not only took this disorder out of the realm of “sacred diseases,” but also implied a distinct organization within the brain. Hughlings Jackson, in the latter part of the 19th century, in his truly remarkable concept of the hierachy of the central nervous system recognized the importance of focal seizures in the study of localization of function within the nervous system. Jackson’s statememt, most often quoted, is that “a convulsion is but a symptom and implies only that there is an occasional, an excessive, and a disorderly discharge of nerve tissue on muscles” (16). This has been interpreted by many to mean a chaotic disorder within the brain.


Glucose Utilization Cerebellar Cortex Focal Seizure Upper Extremity Sensorimotor System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajmone-Marsan, C. (1969): Acute effects of topical epileptogenic agents. In Jasper, K. H., Ward, A. A., Jr., and Pope, A. (eds.). Basic Mechanisms of the Epilepsies. Boston, Little, Brown and Company, 299–328.Google Scholar
  2. 2.
    Brodai, A. (1969): Neurological Anatomy in Relation to Clinical Medicine. Second edition, New York, Oxford University Press.Google Scholar
  3. 3.
    Carpenter, M. B. (1976): Anatomical organization of the corpus striatum and related nuclei. In Yahr, M. D.(ed.). The Basal Ganglia, New York, Raven Press.Google Scholar
  4. 4.
    Caveness, W. F., Kosaka, K., Hosokawa, S. and O’Neill, R. R. (1977): Cerebral-cerebellar paroxysmal activity in experimental focal seizures. Ann. Neurol. 1: 287–289.PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper, I. S., Riklan, M., and Snider, R. S. (1974): The Cerebellum, Epilepsy, and Behavior. New York, Plenum Press.CrossRefGoogle Scholar
  6. 6.
    Creutzfeldt, O. D. (1973): Synaptic organization of the cerebral cortex and its role in epilepsy. In Brazier, M. A. B. (ed.). Epilepsy: Its Phenomena in Man. New York, Academic Press, 11: 12–29.Google Scholar
  7. 7.
    Denny-Brown, D. (1967): The fundamental organization of motor behavior. In Yahr, M. D., and Purpura, D. P. (eds.). Neurophysiological Basis of Normal and Abnormal Motor Activities. Hewlett, N.Y. Raven Press, 415–444.Google Scholar
  8. 8.
    Dow, R. S. (1965): Extrinsic regulatory mechanisms of seizure activity. Epilepsia 6: 122–140.PubMedCrossRefGoogle Scholar
  9. 9.
    Dow, R. S., Fernandes-Guardiola, A. and Manni, E. (1962): The influence of the cerebellum on experimental epilepsy. Electroencephalogr. Clin. Neurophysiol. 14: 383–398.CrossRefGoogle Scholar
  10. 10.
    Eccles, J. C. (1969): The Inhibitory Pathways of the Central Nervous System. Springfield, Illinois, Charles C. Thomas.Google Scholar
  11. 11.
    Eccles, J. C., Ito, M. and Szentágothai, J. (1967): The Cerebellum as a Neuronal Machine. Heidelberg, Berlin, Göttingen and New York, Springer-Verlag.Google Scholar
  12. 12.
    Fisher, R. S. and Prince, D. A. (1977): Spike-wave rhythms in cat cortex induced by parenteral penicillin II. Cellular features. Electroencephalogr. Clin. Neurophysiol. 42: 625–639.CrossRefGoogle Scholar
  13. 13.
    Glowinski, J. (1977): Some properties of the ascending dopaminergic pathways. Interaction of the nigrostriatal dopaminergic system with other neuronal pathways. NRP Meeting, June 20 — July 1, 1977, Boulder, Colorado.Google Scholar
  14. 14.
    Herz, A. and Zielgansberger, W. (1972): Changes of focal potential by iontophoretic application of glutamic acid and gamma-amino-butyric acid. In Petsche, H. and Brzier, M. A. B. (eds.). Synchronization of EEG Activity in Epilepsies. New York, Springer-Verlag, 141–153.CrossRefGoogle Scholar
  15. 15.
    Jackson, J. H. (1958): A study of convulsions. In Taylor, J., Holmes, G. and Walshe, F. M. R. (eds.). Selected Writings of John Hughlings Jackson. New York, Basic Books, Inc., 354.Google Scholar
  16. 16.
    Jackson, J. H. (1958): A study of convulsions. In Taylor, J., Holmes, G. and Walshe, F. M. R. (eds.). Selected Writings of John Hughlings Jackson, New York, Basic Books, Inc., 8.Google Scholar
  17. 17.
    Julien, R. M. (1974): Experimental epilepsy: cerebro-cerebellar interaction and antiepileptic drugs. In Cooper, I. S., Riklan, M. and Snider, R. S (eds.). The Cerebellum, Epilepsy and Behavior. New York, Plenum Press, 97–118.CrossRefGoogle Scholar
  18. 18.
    Kennedy, C., Des Rosiers, M. H., Sakurada, O., Shinohara, M., Reivich, M., Jehle, J. W. and Sokoloff, L. (1976): Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [C] deoxyglucose technique, Proc. Natl. Acad. Sci. U.S.A. 73: 4230–4234.PubMedCrossRefGoogle Scholar
  19. 19.
    Matsumoto, H. (1964): Intracellular events during the activation of cortical epileptiform discharges. Electroencephalogr. Clin. Neurophysiol. 17: 294–307.CrossRefGoogle Scholar
  20. 20.
    Oscarsson, E. (1967): Functional significance of information channels from the spinal cord to the cerebellum. In Yahr, M. D., and Purpura, D., O., (eds.). Neurophysiology Basis of Normal and Abnormal Motor Activities. New York, Raven Press, 93–117.Google Scholar
  21. 21.
    Penfield, W. and Jasper, H. (1954): Epilepsy and the Functional Anatomy of the Human Brain. Boston, Little Brown and Co.Google Scholar
  22. 22.
    Petsche, H. (1976): Pathophysiological apsects of epileptic seizures. In Birkmayer, W. (ed.). Epileptic Seizures — Behavior — Pain. Baltimore, University Park Press, 11–31.Google Scholar
  23. 23.
    Prince, D. A. (1968): Inhibition in “epileptic” neurons. Exp. Neurol. 21: 207–321.Google Scholar
  24. 24.
    Purpura, D. P. (1976): Physiological organization of the basal ganglia. In Yahr, M. D. (ed.). The Basal Ganglia. New York, Raven Press, 91–114.Google Scholar
  25. 25.
    Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977): The [C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28: 897–916.PubMedCrossRefGoogle Scholar
  26. 26.
    Souqeus, A. (1936): Etapes de la neurologie dans l’ antiquité” grecque. Paris, Masson et Cie., 246.Google Scholar
  27. 27.
    Szentágothai, J., University of Budapest, Hungary, Personal communication.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • W. F. Caveness
    • 1
  1. 1.Laboratory of Experimental NeurologyNational Institutes of Neurological and Communicative Disorders and strokeBethesdaUSA

Personalised recommendations