Significance of Adenylate Cyclase in the Regulation of the Permeability of Brain Capillaries


Certain enzymes found by histochemical methods to be confined to the capillary wall have long been supposed to take an active part in the regulation of brain-capillary permeability. For example, in cases of experimentally enhanced vascular permeability, an increase of nonspecific alkaline Phosphomonoesterase (EC has been reported (60). The capillary butyrylcholin-esterase (EC activity described originally by Koelle (46) could be demonstrated at the light-microscopic level in some species in those brain areas that were protected by the blood-brain barrier (19, 37). Recent results of Karcsú, Jancsó and Tóth (44) have shown, however, that the capillaries in the area postrema, if studied under the electron microscope, do manifest butyrylcho-linesterase activity. “Extraneuronal” dopa-decarboxylase (EC has also been found to be confined to the walls of brain capillaries, providing an enzyme trapping mechanism for monoamine precursors (6, 7).


Tight Junction Adenylate Cyclase Basal Lamina Brain Edema Capillary Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baca, G.M. and Palmer, G.C. (1975): Presence of hormonally-sensitive adenylate cyclase receptors in capillary-enriched fractions from rat cerebral cortex. Blood Vessels (in press).Google Scholar
  2. 2.
    Baker, R.N., Cancilla, P.A., Pollock, P.S. and Frommes, S.P. (1971): The movement of exogenous protein in experimental cerebral edema. An electron microscopic study after freeze-injury. J. Neuropathol. Exp. Neurol. 30: 668.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartoszewitz, W. and Barrnett, R.J. (1964): Fine structural localization of nucleoside phosphatase activity in urinary bladder of the toad. J. Ultrastruct. Res. 10: 599–609.CrossRefGoogle Scholar
  4. 4.
    Baudry, M., Martres, M.P. and Schwartz, J.C. (1975): H1 and H2 receptors in the histamine-induced accumulation of cyclic AMP in guinea pig brain slices. Nature 253: 362–364.PubMedCrossRefGoogle Scholar
  5. 5.
    Beggs, J.L. and Waggener, J.D. (1976): Transendothelial vesicular transport of protein following compression injury to the spinal cord. Lab. Invest. 34: 428–439.PubMedGoogle Scholar
  6. 6.
    Betler, A., Falk, B. and Rosenberg, E. (1964): The direct demonstration of a barrier mechanism in the brain capillaries. Acta Pharmacol. Toxicol. 20: 317–321.CrossRefGoogle Scholar
  7. 7.
    Betler, A., Falk, B., Owman, Ch. and Rosengreen, E. (1966): The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol. Rev. 18: 369–385.Google Scholar
  8. 8.
    Black, J.W., Duncan, W.A.M., Durant, C.J., Ganellin, C.R. and Parson, E.M. (1972): Definition and antagonism of histamine H2-receptors. Nature 236: 385–390.PubMedCrossRefGoogle Scholar
  9. 9.
    Bodenheimer, T.S. and Brightman, M.W. (1968): A blood-brain barrier to peroxidases surrounded by perivascular spaces. Am. J. Anat. 122: 249–268.PubMedCrossRefGoogle Scholar
  10. 10.
    Brightman, M.W., Hori, M., Rapaport, S.I., Reese, T.S. and Westergaard, E. (1973): Osmotic opening of tight junctions in cerebral endothelium. J. Comp. Neurol. 152: 317–326.PubMedCrossRefGoogle Scholar
  11. 11.
    Butcher, R.W. and Sutherland, E.W. (1962): Adenosine 3’,5’-phosphate in biological materials. I. Purification and properties of cyclic 3’,5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’,5’-phosphate in human urine. J. Biol. Chem. 237: 1244–1250.PubMedGoogle Scholar
  12. 12.
    Chasin, M., Rivkin, I., Mamrak, F., Samaniego, S. and Hess, S.M. (1971): α and β-adrenergic receptors of accumulation of cyclic adenosine 3’,5’-monophosphate in specific areas of guinea pig brain. J. Biol. Chem. 246: 2037–2041.Google Scholar
  13. 13.
    Clark, R.B. and Perkins, J.P. (1971): Regulation of adenosine 3’,5’-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc. Natl. Acad. Sci. U.S.A. 68: 2757–2760.PubMedCrossRefGoogle Scholar
  14. 14.
    Dropp, J.J. (1972): Mast cells in the central nervous system of several rodents. Anat. Rec. 174: 227–238.PubMedCrossRefGoogle Scholar
  15. 15.
    Drummond, G.I. and Duncan, L. (1970): Adenyl cyclase in cardiac tissue. J. Biol. Chem. 245: 976–983.PubMedGoogle Scholar
  16. 16.
    Edvinsson, L., Owman, C. and Sjöberg, N.O. (1976): Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological study. Brain Res. 115: 377–393.PubMedCrossRefGoogle Scholar
  17. 17.
    Eto, T., Omae, T. and Yamamoto, T. (1971): An electron microscope study of hypertensive encephalopathy in the rat with renal hypertension. Arch. Histol. Jap. 33: 133.PubMedCrossRefGoogle Scholar
  18. 18.
    Fisher, M.A., Hagen, D.Q. and Colvin, R.B. (1966): Aminooxidacetic acid: interactions with gamma-amino-butyric acid and the blood-brain barrier. Science 153: 1668–1670.PubMedCrossRefGoogle Scholar
  19. 19.
    Flumerfelt, B.A., Lewis, P.R. and Gwyn, D.G. (1973): Cholinesterase activity of capillaries in the rat brain. A light and electron microscopic study. J. Histochem. 5: 67–77.CrossRefGoogle Scholar
  20. 20.
    Forn, J. and Krishna, G. (1970): Effect of norepinephrine, histamine and other drugs on cyclic 3’,5’-AMP formation in brain slices of various animal species. Pharmacology 5: 193–204.CrossRefGoogle Scholar
  21. 21.
    Giacomelli, F., Wiener, J. and Spiro, D. (1970): The cellular pathology of experimental hypertension. V. Increased permeability of cerebral arterial vessels. Am. J. Pathol. 59: 133–159.PubMedGoogle Scholar
  22. 22.
    Van Gelder, N.M. (1965): The: histochemical demonstration of gamma-aminobutyric acid metabolism by reduction of a tetrazolium salt. J. Neurochem. 12: 231–237.CrossRefGoogle Scholar
  23. 23.
    Van Gelder, N.M. (1965): A comparison of gamma-ami no -butyric acid metabolism in rabbit and mouse nervous tissue. J. Neurochem. 12: 239–244.CrossRefGoogle Scholar
  24. 24.
    Van Gelder, N.M. (1966): The effect of aminoacetic acid on the metabolism of gamma-aminobutyric acid in brain. Biochem. Pharmacol. 15: 533–539.PubMedCrossRefGoogle Scholar
  25. 25.
    Van Gelder, N. M. and Elliott, K.A.C. (1958): Disposition of gamma-aminobutyric acid administered to mammals. J. Neurochem. 3: 139–143.CrossRefGoogle Scholar
  26. 26.
    Hamberger, A. and Hamberger, B. (1966): Uptake of catecholamines and penetration of trypan blue after blood-brain barrier lesions. Z. Zeilforsch. 70: 386–392.CrossRefGoogle Scholar
  27. 27.
    Hansson, H.A., Johansson, B. and Blomstrand, C. (1975): Ultrastructural studies on cerebrovascular permeability in acute hypertension. Acta Neuropathol. 32: 187–198.PubMedCrossRefGoogle Scholar
  28. 28.
    Hegstrand, L.R., Kanof, P.D. and Greengard, P. (1976): Histamine-sensitive adenylate cyclase in mammalian brain. Nature 260: 163–165.PubMedCrossRefGoogle Scholar
  29. 29.
    Hirano, A., Dembitzer, H.M., Becker, N.H., Levine, S. and Zimmerman, H.M. (1970): Fine structural alterations of the blood-brain barrier in experimental allergic encephalomyelitis. J. Neuropathol. Exp. Neurol. 29: 432–440.PubMedCrossRefGoogle Scholar
  30. 30.
    Hirano, A., Becker, N.H. and Zimmerman, H.M. (1969): Pathological alterations in the cerebral endothelial cell barrier to peroxidase. Arch. Neurol. 20: 300–308.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoff, H.F. (1968) : A comparison of the fine-structural localization of nucleoside phosphatase activity in large intracranial blood vessels and the thoracic aorta of rabbits. Histochemie 13: 183–191.PubMedCrossRefGoogle Scholar
  32. 32.
    Huang, M., Shimizu, H. and Daly, J.W. (1972): Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs. J. Med. Chem. 15: 462–466.PubMedCrossRefGoogle Scholar
  33. 33.
    Joó, F. (1968): The effect of the inhibition of adenosine triphosphatase activity on the fine structural organization of brain capillaries. Nature 219: 1378–1379.PubMedCrossRefGoogle Scholar
  34. 34.
    Joó, F. (1969): Changes in the molecular organization of the basement membrane after inhibition of adenosine triphosphatase activity in rat brain capillaries. Cytobios 3: 289–301.Google Scholar
  35. 35.
    Joó, F. (1971): Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood-brain barrier. Brit. J. Exp. Pathol. 52: 646–649.Google Scholar
  36. 36.
    Joó, F. (1972): Effect on N6O2-dibutyryl cyclic 3’,5’-adenosine monophosphate on the pinocytosis of brain capillaries of mice. Experientia 28: 1470.PubMedCrossRefGoogle Scholar
  37. 37.
    Joó, F. and Csillik, B. (1966): Topographic correlation between the hematoencephalic barrier and the Cholinesterase activity of brain capillaries. Exp. Brain Res. 1: 147–151.PubMedCrossRefGoogle Scholar
  38. 38.
    Joó, F. and Karnushina, I. (1973): A procedure for the isolation of capillaries from rat brain. Cytobios 8: 41–48.PubMedGoogle Scholar
  39. 39.
    Joó, F., Rakonczay, Z. and Wollemann, M. (1975): cAMP-mediated regulation of the permeability in the brain capillaries. Experientia 31: 582–583.PubMedCrossRefGoogle Scholar
  40. 40.
    Joó, F., Szücs, A. and Csanda, E. (1976): Metiamide-treatment of brain oedema in animals exposed to 90yttrium irradiation. J. Pharm. Pharmacol. 28: 162–163.PubMedCrossRefGoogle Scholar
  41. 41.
    Joó, F., Toth, I. and Jancsó, G. (1975): Brain adenylate cyclase: its common occurrence in the capillaries and astrocytes. Naturwissenschaften 8: 397.CrossRefGoogle Scholar
  42. 42.
    Kakiuchi, S. and Rall, T.W. (1968): The influence of chemical agents on the accumulation of adenosine 3’,5’-phosphate in slices of rabbit cerebellum. Mol. Pharmacol. 4: 367–378.PubMedGoogle Scholar
  43. 43.
    Kakiuchi, S. and Rail, T.W. (1968): Studies on adenosine 3’,5’-phosphate in rabbit cerebral cortex. Mol. Pharmacol. 4: 379–388.PubMedGoogle Scholar
  44. 44.
    Karcsu, S., Jancsó, G. and Toth, L. (1977): Butyryl-cholinesterase in fenestrated capillaries of the rat area postrema. Brain Res. 120: 146–150.PubMedCrossRefGoogle Scholar
  45. 45.
    Klatzo, I. (1967): Presidential Address: Neuro-pathological aspects of brain edema. J. Neuropathol. Exp. Neurol. 26: 1–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Koelle, G.B. (1954): The histochemical localization of Cholinesterase in the central nervous system of the rat. J. Comp. Neurol. 100: 211–235.PubMedCrossRefGoogle Scholar
  47. 47.
    Lampert, P., Garro, F. and Pentschew, A. (1967): Lead encephalopathy in suckling rats. In Brain Edema, Klatzo, I. and Seitelberger, F. (eds.), p 207, Springer, New York.CrossRefGoogle Scholar
  48. 48.
    Laursen, H., Schroder, H. and Westergaard, E. (1975): The effect of portocaval anastomosis on the permeability to horseradish peroxidase of cerebral vessels of the rat. Acta Pathol. Microbiol. Scand. 83: 266–268.Google Scholar
  49. 49.
    Lowe, D., Schieweck, Chr., Meier-Ruge, W., Bangerter, D. and Wolff, J.R. (1975): The effect of ouabain on the ultrastructure of cerebral arterioles and surrounding tissue studied by a cannulation of a cerebral artery. Res. Exp. Med. 166: 97–114.CrossRefGoogle Scholar
  50. 50.
    Lust, W.D., MrSulja, B.B., Mrsulja, B.J., Passonneau, J.V. and Klatzo, I. (1975): Putative neurotransmitters and cyclic nucleotides in prolonged ischemia of the cerebral cortex. Brain Res. 98: 394–399.PubMedCrossRefGoogle Scholar
  51. 51.
    Marchesi, V.T. and Barrnett, R.J. (1964): The localization of nucleotide phosphatase activity in different types of small blood vessels. J. Ultrastruct. Res. 10: 103–115.PubMedCrossRefGoogle Scholar
  52. 52.
    Møllgard, K. and Saunders, N.R. (1975): Complex tight junctions of epithelial and of endothelial cells in early foetal brain. J. Neurocytol. 4: 453–468.CrossRefGoogle Scholar
  53. 53.
    Mø11gard, K., Malinowska, D.H. and Saunders, N.R. (1976): Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature 264: 293–294.CrossRefGoogle Scholar
  54. 54.
    Raimondi, A.J., Evans, J.P. and Mullan, S. (1962): Studies of cerebral edema. III. Alterations in the white matter: an electron microscopic study using ferritin as a labeling compound. Acta Neuropathol. 2: 177–197.CrossRefGoogle Scholar
  55. 55.
    Rapaport, S.I. (1970): Effect of concentrated solutions on blood-brain barrier. Am. J. Physiol. 219: 270–274.Google Scholar
  56. 56.
    Reese, T.S. and Karnovsky, M.J. (1967): Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34: 207–217.PubMedCrossRefGoogle Scholar
  57. 57.
    Reik, L., Petzold, G.L., Higgins, J.A., Greengard, P. and Barrnett, R.J. (1970) : Hormone-sensitive adenyl cyclase: cytochemical localization in rat liver. Science 168: 382–284.PubMedCrossRefGoogle Scholar
  58. 58.
    Rippe, B., Kamiya, A. and Folkow, B. (1977): Is capillary micropinocytosis of any significance for the transcapillary transfer of plasma proteins? Acta Physiol. Scand. 100: 258–260.PubMedCrossRefGoogle Scholar
  59. 59.
    Rodriquez, L.A. (1955): Experiments on the histological locus of the haematoencephalic barrier. J. Comp. Neurol. 102: 27–45.CrossRefGoogle Scholar
  60. 60.
    Samorajski, T. and McCloud, J. (1961): Alkaline Phosphomonoesterase and blood-brain permeability. Lab. Invest. 10: 492–501.PubMedGoogle Scholar
  61. 61.
    Sattin, A.W. and Rail, T.W. (1970): The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’,5’-monophosphate content of guinea pig cerebral cortex slices. Mol. Pharmacol. 6: 13–23.PubMedGoogle Scholar
  62. 62.
    Shimizu, H., Creveling, C.R. and Daly, J.W. (1970): Stimulated formation of adenosine 3’,5’-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc. Natl. Acad. Sci. U.S.A. 65: 1033–1040.PubMedCrossRefGoogle Scholar
  63. 63.
    Schultz, J. and Daly, J.W. (1973): Adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices: effects of a- and 3-adrenergic agents, histamine, serotonin and adenosine. J. Neurochem. 21: 573–579.PubMedCrossRefGoogle Scholar
  64. 64.
    Schultz, J. and Daly, J.W. (1973): Accumulation of cyclic adenosine 3’,5’-monophosphate in cerebral cortical slices from rat and mouse: stimulatory effect of a- and 3-adrenergic agents and adenosine. J. Neurochem. 21: 1319–1326.PubMedCrossRefGoogle Scholar
  65. 65.
    Simionescu, M., Simionescu, N. and Palade, G.E. (1975): Permeability of muscle capillaries to small hemepeptides. J. Cell Biol. 64: 584–607.CrossRefGoogle Scholar
  66. 66.
    Sonkodi, S., Joó, F. and Maurer, M. (1970): The permeability state of the blood-brain barrier in relation with the plasma renin activity in early stage of experimental renal hypertension. Brit. J. Exp. Pathol. 51: 448–452.Google Scholar
  67. 67.
    Torack, R.M. and Barrnett, R.J. (1964): The fine structural localization of nucleotide phosphatase activity in the blood-brain barrier. J. Neuropathol. Exp. Neurol. 23: 46–59.CrossRefGoogle Scholar
  68. 68.
    Várkonyi, T. and Joó, F. (1968): The effect of nickel chloride on the permeability of the blood-brain barrier. Experientia 24: 452.PubMedCrossRefGoogle Scholar
  69. 69.
    Wagner, R.C., Kreiner, P., Barrett, R.J. and Bitensky, M.W. (1972): Biochemical characterization and cytochemical localization of catecholamine-sensitive adenylate cyclase in isolated capillary endothelium. Proc. Natl. Acad. Sci. U.S.A. 69: 3175–3179.PubMedCrossRefGoogle Scholar
  70. 70.
    Ware, R.A., Chang, L.W. and Burkholder, P.M. (1974): An ultrastructural study on the blood-brain barrier dysfunction following mercury intoxication. Acta Neuropathol. 30: 211–224.PubMedCrossRefGoogle Scholar
  71. 71.
    Westergaard, E. (1974): Transport of protein tracers across cerebral arterioles under normal conditions. In: Pathology of Cerebral Microcirculation. J. Cervos-Navarro (ed.), pp 218–227, W. de Gruyter & Co. Berlin, New York.Google Scholar
  72. 72.
    Westergaard, E. (1975): Enhanced vesicular transport of exogenous peroxidase across cerebral vessels, induced by serotonin. Acta Neuropathol. 32: 27–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Westergaard, E., van Deurs, B. and Brøndstedt, H.E. (1977): Increased vesicular transfer of horseradish peroxidase across cerebral endothelium, evoked by acute hypertension. Acta Neuropathol. 37: 141–152.PubMedCrossRefGoogle Scholar
  74. 74.
    Wolff, J.R., Schieweck, Chr., Emmenegger, H. and Meier-Ruge, W. (1975): Cerebrovascular ultra-structural alterations after intra-arterial infusions of ouabain, scilla-glycosides, heparin and histamine. Acta Neuropathol. 31: 45–58.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • F. Joó
    • 1
  1. 1.Laboratory of Molecular Neurobiology, Institute of BiophysicsBiological Research CenterSzegedHungary

Personalised recommendations