Advertisement

Applications of Algebra and Geometry in Applied Systems Theory

  • J. Casti

Abstract

The two sections of the chapter discuss some aspects of modern algebra and geometry in the context of applied systems methodology. Section 1 surveys much recent work on problems of reachability and observability and relates this work to applied problems in resource management, water systems regulations, urban traffic networks, and energy system planning.

Keywords

Simplicial Complex Incidence Matrix Chain Group Linear Dynamical System Bilinear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. McFadde, ‘On the Controllability of Decentralized Macro- economic Systems: The Assignment Problem’, in Math. Systems Theory and Economics-I, H. Kuhn, Ed., Vol. 11, New York (1969).Google Scholar
  2. (2).
    R. Kalman, P. Falb and M. Arbib, Topics in Mathematical Systems Theory, McGraw-Hill Co., New York (1969).Google Scholar
  3. (3).
    R. Kalman, Lectures on Controllability and Observability, Proc. CIME Summer School, Edizioni Cremonese, Rome (1969).Google Scholar
  4. (4).
    R. Kalman, ‘On the General Theory of Control Systems’, Proc. 1st IFAC Congress, Mosco (1960).Google Scholar
  5. (5).
    R. Gabasov and F. Kirillova, The Qualitative Theory of Optimal Processes, Nauka, Moscow (1969)(Russian); English Tran. Marcel Dekker Co., New York (1976).Google Scholar
  6. (6).
    R. Brockett, Finite-Dimensional Linear Systems, John Wiley & Sons, New York (1970).Google Scholar
  7. (7).
    L. Markus, Dynamic Keynesian Economic Systems: Control and Identification, in Math. System Theory and Economics-I, Ed. H. Kuhn, Springer Lecture Notes in OR & Math. Economics, Vol. 11, New York (1969).Google Scholar
  8. (8).
    C. Bruni, G. DiPillo and G. Koch, Bilinear Systems: An Appealing Class of ‘Nearly Linear’ Systems in Theory and Application, IEEE Tran. Auto. Cont. AC-19, 33b (1973)Google Scholar
  9. (9).
    R. Brockett, Lie Algebras and Lie Groups in Control Theory, in Proc. NATO Advanced Study Institute on Geometric and Algebraic Methods for Nonlinear Systems, London (1973).Google Scholar
  10. (10).
    A. Isidori, New Results on the Abstract Realization Theory of Nonlinear Input-Output Functions, Ricerche di Automatica, 52 (1974).Google Scholar
  11. (11).
    C. Lobry, Dynamical Polysystems and Control Theory, Proc. NATO Advanced Study Institute on Geometric and Algebraic Methods for Nonlinear Systems, London (1973).Google Scholar
  12. (12).
    C. Walters, Adaptive Control Problems in Renewable Resource Development, Internal Paper, IIASA (1975).Google Scholar
  13. (13).
    C.Walters, Optimal Harvest Strategies for Salmon in Relation to Environmental Variability and Uncertainty About Production Parameters, Internal Paper, IIASA (1975).Google Scholar
  14. (14).
    A. Sz. Nagy, State-Space Approach to Hydrology, Symposium on Math. Modelling in Hydrology, University College, Galway, Ireland April 1974.Google Scholar
  15. (15).
    J. Casti, Algorithms for the Stochastic Inflow-Nonlinear Objective Water Reservoir Control Problem, IIASA Workshop on Vistula and Tisza River Basins, IIASA February 1975.Google Scholar
  16. (16).
    A. Sz. Nagy, On the Optimal Stochastic Control of Water Resources Systems, Internal Paper, IIASA (1975).Google Scholar
  17. (17).
    R. Mehra, An Optimal Control Approach to National Settlement System Planning, IIASA RM-75-58, IIASA (1975).Google Scholar
  18. (18).
    H. Strobel, Transportation, Automation and the Quality of Urban Living, IIASA RR-75-3U, IIASA (1975).Google Scholar
  19. (19).
    R. Kaiman, B. Ho and K. Narendra, Controllability of Linear Dynamical Systems, Contr. to Diff. Eqs., 1, 189 (1963).Google Scholar
  20. (20).
    J. Wei and E. Norman, On the Global Representation of the Solutions of Linear Differential Equations as a Product of Exponentials, Proc. Amer. Math. Soc., 15, 327 (1964).CrossRefGoogle Scholar
  21. (21).
    J. P. Charpentier, Overview on Techniques and Models Used in the Energy Field, IIASA RM-75-8, IIASA (1975).Google Scholar
  22. (22).
    R. Brockett, Proc. 1974 Conf. on Bilinear Systems, Eds. R. Möhler and A. Ruberti, Springer-Lect. Notes in OR and Math. Economics, Springer- Verlag (1974).Google Scholar
  23. (23).
    R. Brammer, Controllability in Linear Autonomous Systems with Positive Controllers, SIAM J. Control, 10, 339 (1972).CrossRefGoogle Scholar
  24. (24).
    J. Casti, Dynamical Systems and Their Applications: Linear Theory, Academic Press, New York (1977).Google Scholar
  25. (25).
    N. Imbert, M. Clique and A. Fossard, Un Critère de Gouvernabilite’ des Systems Bilinéaires, Revue Française df Auto., Inform. et Rech., 9, J-3, 55 (1975).Google Scholar
  26. (26).
    P. D’Alessandro, A. Isidori and A. Ruberti, Realization and Structure Theory of Bilinear Dynamical Systems, SIAM J. Control, 12, 517 (1974).CrossRefGoogle Scholar
  27. (27).
    C. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Interscience, New York (1976).Google Scholar
  28. (28).
    R. Kaiman, Pattern Recognition Properties of Multilinear Machines, IFAC Symp. on Tech. and Biological Problems of Control, Yerevan, USSR (1968).Google Scholar
  29. (29).
    G. Marchesini and G. Picci, Some Results on the Abstract Realization Theory of Multilinear Systems, in Theory and Application of Variable Structure Systems, Eds. R. Möhler and A. Ruberti, Academic Press, New York (1972).Google Scholar
  30. (30).
    G. Haynes and H. Hermes, Nonlinear Controllability via Lie Theory, SIAM J. Control, 8, U50 (1970).CrossRefGoogle Scholar
  31. (31).
    E. Sontag, On the Internal Realization of Polynomial Response Maps, Ph.D. Thesis, Mathematics Dept., U. of Florida, Gainesville, Florida (1976).Google Scholar
  32. (32).
    S. Kou, D. Elliott and T. Tarn, Observability of Nonlinear Systems, Infor, and Control, 22, 89 (1973).CrossRefGoogle Scholar
  33. (33).
    N. Duong, C. Winn and G. Johnson, Modern Control Concepts in Hydrology, IEEE Tran. Syst. Man, and Cyber., SMC-5, k6 (1975).Google Scholar
  34. (34).
    R. H. Atkin, Mathematical Structure in Human Affairs, Heinemann Publishing Company, London (1974).Google Scholar
  35. (35).
    R. H. Atkin, An Approach to Structure in Architectural and Urban Design-1, Environment and Planning, B, 1, 51 (1974).Google Scholar
  36. (36).
    R. H. Atkin, An Approach to Structure in Architectural and Urban Design-2, Environment and Planning, B, 1, 173 (1974).Google Scholar
  37. (37).
    R. H. Atkin, An Approach to Structure in Architectural and Urban Design-3, Environment and Planning, B, 2, 21 (1975).Google Scholar
  38. (38).
    L. Pontryagin, Foundations of Combinatorial Topology, Graylock Press, New York (1952).Google Scholar
  39. (39).
    P. Alexandroff, Elementary Concepts of Topology, Dover, New York (l96l).Google Scholar
  40. (40).
    R. Brockett, Finite Dimensional Linear Systems, John Wiley and Sons, New York (1970).Google Scholar
  41. (41).
    J. Casti, Dynamical Systems and Their Applications: Linear Theory, Academic Press, New York, ( To appear 1977 ).Google Scholar
  42. (42).
    E. Flanders, Differential Forms, Academic Press, New York (1963).Google Scholar
  43. (43).
    R. Shields and J. Pearson, Structural Controllability of Multiinput Linear Systems, IEEE Tran. Auto. Control, AC-21, 203 (1976).Google Scholar
  44. (44).
    D.Siljak, On the Stability of Large-Scale Systems Under Structural Perturbations, IEEE Tran. SMC, SMC-3, 415 (1973).Google Scholar
  45. (45).
    R.Kaiman, P.Falb and M.Arbib, Topics in Mathematical Systems Theory, McGraw-Hill, New York (1969).Google Scholar
  46. (46).
    R.Herman, Interdisciplinary Mathematics, Vols. I-IX, Mathematical Science Press, Brookline, Massachusetta (1975).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. Casti
    • 1
    • 2
  1. 1.Department of Computer ApplicationsNew York UniversityNew YorkUSA
  2. 2.Department of Information Systems and Quantitative AnalysisNew York UniversityNew YorkUSA

Personalised recommendations