Advertisement

Semiconductor Devices in Perspective — Discovery of and Recent Developments in Tunneling Devices

  • Leo Esaki

Abstract

The concept of tunneling has been known since the early days of the development of Quantum Mechanics as the finite probability of a particle crossing from a classically allowed region of space into one that is classically forbidden. Oppenheimer(1) applied this concept to explain the autoionization of excited states of atomic hydrogen under high applied electric field as early as 1928. Fowler (2) and Nordheim(2) explained the interesting experimental observation of cold emission of electrons from metals dating back to 1922 in terms of the reduction of the barrier width at the metal surface due to high applied electric field, thereby leading to an observable probability of tunneling and gave the famous Fowler-Nordheim formula for the current density as a function of the electric field F
$$ J = A\;{F^2}\;\exp [ - 4{(2m)^{{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}{\phi ^{{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}/3hF] $$
(1)
where φ is the work function of the metal.

Keywords

Semiconductor Device Tunnel Junction Incident Photon Energy Tunnel Diode Negative Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. R. Oppenheimer, Phys. Rev., 31, 66 (1928); Proc. Nat’l. Acad Sci. U.S., 14, 363 (1928).CrossRefGoogle Scholar
  2. (2).
    R. H. Fowler and L. Nordheim, Proc. Roy. Soc. London, A 119 173, (1928).CrossRefGoogle Scholar
  3. (3).
    G. Gamow, Physik, Z., 51, 20h (1928).Google Scholar
  4. (4).
    R. W. Gurney and E. U. Condon, Nature, 122, 439 (1928).CrossRefGoogle Scholar
  5. (5).
    O. K. Rice, Phys. Rev., 34, 1451 (1929).CrossRefGoogle Scholar
  6. (6).
    J. Frenkel, Phys. Rev., 36, 1604 (1930).CrossRefGoogle Scholar
  7. (7).
    R. Holm and W. Meissner, Z.Physik, 74, 715 (1932); 86, 787 (1933).CrossRefGoogle Scholar
  8. (8).
    A. H. Wilson, Proc. Roy. Soc, London, A 136, U87 (1932).Google Scholar
  9. (9).
    J. Frenkel and A. Joffe, Physik. Z. Sowjetunion, 19 60 (1932).Google Scholar
  10. (10).
    L. Nordheim, Z. Physik, 75, k3h (1932).Google Scholar
  11. (11).
    G. Zener, Proc. Roy. Soc, London, 145, 523 (1934).CrossRefGoogle Scholar
  12. (12).
    K. B. McAfee, E. J. Ryder, W. Shockley and M. Sparks, Phys. Rev., 83, 650 (1951).CrossRefGoogle Scholar
  13. (13).
    A. G. Chynoweth and K. G. McKay, Phys. Rev., 106, 418 (1957).CrossRefGoogle Scholar
  14. (14).
    G. G. Macfarlane, T. P. Mclean, J. E. Quarrington and V. Roberts, J. Phys. Chem. Solids, 8, 388 (1959).CrossRefGoogle Scholar
  15. (15).
    J. R. Haynes, M. Lax and W. F. Flood, J.Phys. Chem. Solids, 8, 392, (1959).CrossRefGoogle Scholar
  16. (16).
    See, for instance, Tunneling Phenomena in Solids, Edited by E. Burstein and S. Lundqvist, Plenum Press, New York (1969).Google Scholar
  17. (17).
    L. Esaki and P. J. Stiles, Phys. Rev. Letters, 16, 1108 (1966); L. L. Chang, P. J. Stiles and L. Esaki, J. Appl. Phys., 38., 4440 (1967); L. E. saki, J.Phys. Soc. Japan, Suppl., 21, 589 (1966).Google Scholar
  18. (18).
    See, for instance, D.Bohm, Quantum Theory, Prentice-Hall, New- Jersey (1951).Google Scholar
  19. (19).
    E. O. Kane, page 9–11 in reference 24.Google Scholar
  20. (20).
    H. K. Henisch, Rectifying Semiconductor Contacts, Clarendon Press, Oxford (1957).Google Scholar
  21. (21).
    A. H. Wilson, Proc. Roy. Soc., A 133, H58 (1931).Google Scholar
  22. (22).
    J. E. Lilienfeld, U. S. Patents 1, 745, 175 (1926); 1, 877, 140 (1928); 1, 900, 018 (1928); O. Heil, British Patent, 439457 (1935); R. Hilsh and R. W. Pohl, Zeits. f. Phys. 111, 399 (1938).Google Scholar
  23. (23).
    W. Schockley and G. L. Pearson, Phys. Rev., 74, 233 (1948).Google Scholar
  24. (24).
    J. Bardeen and W. H. Brattain, Phys. Rev., 74, 230 (19U8); Phys. Rev., 74, 231 (1948).CrossRefGoogle Scholar
  25. (25).
    J. Bardeen and W. H. Brattain, Phys. Rev., 75, 1208 (1948).CrossRefGoogle Scholar
  26. (26).
    W. Shockley, IEEE Trans. Electron Devices, 23, 597 (1976).CrossRefGoogle Scholar
  27. (27).
    W. Shockley, NBS Special Pub. 388, Proc. of Conf. on the Public Need and the Role of the Invention, Monterey, Calif., p. 47 June 1973.Google Scholar
  28. (28).
    Proc. of Conf. Semi-Conducting Materials, Reading, 1950, published by Butterworths Scientific Pub. Ltd., London (1951).Google Scholar
  29. (29).
    G. K. Teal, IEEE Trans. Electron Devices, 23, 621 (1976).CrossRefGoogle Scholar
  30. (30).
    M. Tanenbaum and D. E. Thomas, Bell Sys. Tech. Jour., 35., 1 (1956).Google Scholar
  31. (31).
    H. J. Welker, IEEE Trans. Electron Devices, 23, 66h (1976).CrossRefGoogle Scholar
  32. (32).
    R. S. Ohl, U.S.Patent 2, 402, 662 (1941).Google Scholar
  33. (33).
    F. M.Smits, IEEE Trans. Electron Devices, 23, 6h0 (1976).Google Scholar
  34. (34).
    J. M. Woodall and H. J. Hovel, Appl. Phys. Lett., 21, 379 (1972).CrossRefGoogle Scholar
  35. (35).
    J. S. Kilby, IEEE Trans. Electron Devices, 23, 6U8 (1976); U.S. Patent 3, 138, 743 (1959).Google Scholar
  36. (36).
    R. N. Noyce, U.S.Patent 2, 981, 877 (1959).Google Scholar
  37. (37).
    G. E. Moore, Intn’l. Dev. Meeting, Tech. Digest, Washington, D.C. p. 11 (1975).Google Scholar
  38. (38).
    D. Kahng, IEEE Trans. Electron Devices, 23, 655 (1976).CrossRefGoogle Scholar
  39. (39).
    R. H. Dennard, U.S.Patent, 3, 387, 286 (1968).Google Scholar
  40. (40).
    W. S. Boyle and G. E. Smith, IEEE Trans. Electron Devices, 23, 66l, (1976).CrossRefGoogle Scholar
  41. (41).
    R. W. Keyes, Proc. IEEE, 63, 740 (1975); J. T. Wallmark, Micro-electronics, E. Keonjian Ed., McGraw Hill, N.Y., p.10 (1963).Google Scholar
  42. (42).
    F. F. Fang and W. E. Howard, Phys. Rev. Lett., 16, 797 (1966).CrossRefGoogle Scholar
  43. (43).
    A. B. Fowler et al., Phys. Rev. Lett., 16, 901 (1966).CrossRefGoogle Scholar
  44. (44).
    E. E. Loebner, IEEE Trans. Electron Devices, 23, 675 (1975).CrossRefGoogle Scholar
  45. (45).
    M. G. A. Bernard and G.Duraffourg, Physica Status Solidi, 1, 699, (1961); W.P.Dumke, Phys. Rev., 127, 1559 (1952).Google Scholar
  46. (46).
    R. N. Hall, IEEE Trans. Electron Devices, 23, 700 (1976).CrossRefGoogle Scholar
  47. (47) Zh. I. Alferov et al., Fiz. Tekh. Poluprov., 2, 1545 (1968)
    and Fiz. Tekh. Poluprov., 3, 1328 (1969).Google Scholar
  48. (48).
    H. Kressel and F. Z. Hawrylo, Appl. Phys. Lett., 17, 169 (1970).CrossRefGoogle Scholar
  49. (49).
    I. Hayashi, M. B. Panish et al., Appl. Phys. Lett., 17, 109 (1970)CrossRefGoogle Scholar
  50. (50).
    J. B. Gunn, IEEE Trans. Electron Devices, 23, 705 (1976).CrossRefGoogle Scholar
  51. (51).
    B. K. Ridley and T. B. Watkings, Proc. Phys. Soc. London, 74, 293, (1961); C.Hilsum, Proc. IRE, 50, 185 (1962).Google Scholar
  52. (52).
    B. C. DeLoach, Jr., IEEE Trans. Electron Devices, 23, 657 (1976).CrossRefGoogle Scholar
  53. (53).
    R. H. Davis and H. H. Hosack, J.Appl. Phys., 34, 861 (1963).Google Scholar
  54. (54).
    L. V. Iogansen, Sove. Phys. JETP., 18, 146 (1964).Google Scholar
  55. (55).
    L. V. Keldysh, Sove. Phys. Solid State, 4, 1658 (1963).Google Scholar
  56. (56).
    A. A. Kastalskii, JETP Letters, 10, 209 (1969).Google Scholar
  57. (57).
    L. Esaki and R. Tsu, IBM J. Res. Develop., 14, 61 (1970).CrossRefGoogle Scholar
  58. (58).
    J. C. Slater, Phys. Rev., 87, 807 (1952).CrossRefGoogle Scholar
  59. (59).
    R. de L. Kronig and W. J. Penney, Proc. Roy. Soc., A 130, 499 (1930).Google Scholar
  60. (60).
    R. A.Smith, Wave Mechanics of Crystalline Solids, John Willey and Sons, Inc., New York (1961).Google Scholar
  61. (61).
    F. Stern and W. E. Howard, Phys. Rev., 163, 816 (1967).CrossRefGoogle Scholar
  62. (62).
    R. G. Chambers, Proc. Phys. Soc. London, A65, 458 ( 1952 ); A.B. Pippared, The Dynamics of Conductor Electrons, Gordon and Breach Science Publishers, Inc., New York (1965).Google Scholar
  63. (63).
    L. Esaki, L. L. Chang, W. E. Howard and V. L. Rideout, Proc. 11th Int. Conf. on the Physics of Semiconductors, Warsaw, Poland ( 1972 ), PWN,-Polish Scientific Publishers, Warsaw, Poland (1972).Google Scholar
  64. (64).
    L. Esaki and L. L. Chang, Thin Solid Films, 36, 285 (1976).CrossRefGoogle Scholar
  65. (65).
    I. B. Ortenburger and W. E. Rudge, IBM International Rep.RJ-1041 (1972).Google Scholar
  66. (66).
    A. Onton, M. R. Lorenz, J. M.Woodall and R.J.Chicotka, J.Cryst. Growth, 27, 166 (1974).Google Scholar
  67. (67).
    L. Esaki and L. L. Chang, Phys. Rev. Lett., 33, 495 (1974).CrossRefGoogle Scholar
  68. (68).
    R. Tsu and L. Esaki, Appl. Phys. Lett., 22, 562 (1973).CrossRefGoogle Scholar
  69. (69).
    A. Y. Cho, M. B. Panish and I.Hayashi, Proc. Symp. on GaAs and Related Compounds, Aachen, Germany (1970) Institute of Physics London, (1971).Google Scholar
  70. (70).
    J. R. Arthur and J. J. Lepore, J. Vac. Sci. Technol., 6, 545 (1969).CrossRefGoogle Scholar
  71. (71).
    L. L. Chang and R. Ludeke, In J. W. Mathews (Ed), Expitaxial Growth, Part A, Academic Press, New York (1975).Google Scholar
  72. (72).
    J. R. Arthur, J. Appl. Phys., 39, 4032 (1968).CrossRefGoogle Scholar
  73. (73).
    R. Ludeke, L. Esaki and L. L. Chang, Appl. Phys. Lett. 24, 417 (1974).CrossRefGoogle Scholar
  74. (74).
    L. L. Chang, A. Segmuller and L. Esaki, Appl. Phys. Lett., (1976).Google Scholar
  75. (75).
    L. L. Chang, L. Esaki and R. Tsu, Appl. Phys. Lett., 24, 593 (1974).CrossRefGoogle Scholar
  76. (76).
    R. Tsu and G. Dohler, Phys Rev., B 12, 680 (1975).Google Scholar
  77. (77).
    R. Dingle, W. Wiegmann and C. H. Henry, Phys. Rev. Lett., 33., 827 (1974).Google Scholar
  78. (78).
    R. Dingle, A. C. Gossard and W. Wiegmann, Phys. Rev. Lett., 34, 1327 (1975).CrossRefGoogle Scholar
  79. (79).
    R. Tsu, L. L. Chang, G. A. Sai-Halasz and L. Esaki, Phys. Rev. Lett., 34, 1509 (1975).CrossRefGoogle Scholar
  80. (80).
    L. L. Chang, H. Sakaki, Chin-An Chang and L. Esaki, Phys. Rev. Lett., 38, 1489 (1977).CrossRefGoogle Scholar
  81. (81).
    P. Manuel, G. A. Sai-Halasz, L. L. Chang, Chin-An Chang and L. Esaki, Phys. Rev. Lett., 37, 1701 (1976).CrossRefGoogle Scholar
  82. (82).
    G. A. Sai-Halasz, R. Tsu and L. Esaki, Appl. Phys. Lett., 30, 651 (1977).CrossRefGoogle Scholar
  83. (83).
    H. Sakaki, L. L. Chang, R. Ludeke, Chin-An Chang, G. A. Sai-Halasz and L. Esaki, Appl. Phys. Lett., 31, 211 (1977).CrossRefGoogle Scholar
  84. (84).
    Chin-An Chang, R. Ludeke, L. L. Chang and L. Esaki, Appl. Phys. Lett., 31, 759 (1977).CrossRefGoogle Scholar
  85. (85).
    L. L. Chang and L. Esaki, Appl. Phys. Lett., 31, 687 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Leo Esaki
    • 1
  1. 1.IBM Thomas J.Watson Research CentreYorktown HeightsUSA

Personalised recommendations