Advertisement

Electrochemical Synthesis of Organometallic Compounds

  • A. P. Tomilov
  • I. N. Brago

Abstract

The chemistry of organometallic compounds began to develop vigorously at the end of the nineteenth century and is now an important route in organic synthesis. Many such compounds are employed in industry and in agriculture. Thus, the use of the Grignard methods by Kipping [1] for synthesis of organosilicon compounds has eventually led to the creation of a new branch of the chemical industry, manufacturing the silicone polymers or silanes. The production of organosilicon products now totals more than 27,000 tons per annum [2]. The researches of Miugli [1], which showed that organic lead compounds provide an effective means for combatting the knock of fuels in motors, set the beginning to the industrial production of tetraethyllead, which has reached 227,000 tons per annum [3], The volume of organotin compounds production has reached approximately 1360 tons per annum [4]. They are used as stabilizers for polyvinyl chloride, as antioxidants for rubbers, as polymerization catalysts for olefines, and as fungicides. Alkyl-aluminums are in demand to the extent of 2720 tons per annum [5]. Organic compounds of mercury, zinc, and magnesium, which are finding various applications, are produced in small amounts mainly on account of their high cost.

Keywords

Electrochemical Reduction Organometallic Compound Electrochemical Synthesis Grignard Reagent British Patent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. Rokhov, D. Herd, and R. Lewis, Chemistry of Organometallic Compounds [Russian translation], IL, Moscow (1963).Google Scholar
  2. 2.
    Chem. Eng. News, 41(47):27 (1963).Google Scholar
  3. 3.
    Synthetic Organicals IL S. Production Sales, T. C. Publ. (1962), p. 114.Google Scholar
  4. 4.
    Chem. Week, 94(4):42 (1964).Google Scholar
  5. 5.
    Chem. Week, 93(8):62 (1963).Google Scholar
  6. 6.
    J. Tafel, Ber., 39:3626 (1906).Google Scholar
  7. 7.
    J. Haggarty, Trans. Electrochem. Soc., 56:421 (1929).Google Scholar
  8. 8.
    J. Tafel, Ber., 44:323 (1911).Google Scholar
  9. 9.
    G. Renger, Ber., 44:337 (1911).Google Scholar
  10. 10.
    T. Arai, Bull. Chem. Soc. Japan, 32:184 (1959).CrossRefGoogle Scholar
  11. 11.
    C. Schall and W. Kirst, Z. Electrochem., 29:537 (1923).Google Scholar
  12. 12.
    T. Sekine, A. Iamura, and K. Sugino, Paper presented at the meeting of the Electrochemical Society (Sept. 30 to Oct. 3), New York (1963).Google Scholar
  13. 13.
    E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 38(12):2868 (1965).Google Scholar
  14. 14.
    V. G. Khomyakov and A. P. Tomilov, Zh. Prikl. Khim., 36:378 (1963).Google Scholar
  15. 15.
    H. Low, J. Chem. Soc., 101:1016, 1544 (1912); Proc. Chem. Soc., 28:98, 162.CrossRefGoogle Scholar
  16. 16.
    T. Arai and T. Ogura, Bull. Chem. Soc. Japan, 33:1018 (1966).CrossRefGoogle Scholar
  17. 17.
    W. Schepss, Ber., 46:2564 (1913).Google Scholar
  18. 18.
    J. Tafel, Ber., 42:3146 (1909).Google Scholar
  19. 19.
    A. P. Tomilov, L. V. Kaabak, and S. L. Varshavskii, Zh. Vses. Khim. Obshch., 8:703 (1963).Google Scholar
  20. 20.
    L. V. Kaabak, A. P. Tomilov, and S. L. Varshavskii, Zh. Vses. Khim. Obshch., 9:700 (1964).Google Scholar
  21. 21.
    A. P. Tomilov and L. V. Kaabak, Zh. Prikl. Khim., 32:2600 (1959).Google Scholar
  22. 22.
    L. V. Kaabak and A. P. Tomilov, Zh. Obshch. Khim., 33:2808 (1963).Google Scholar
  23. 23.
    A. P. Tomilov, L. V. Kaabak, and I. N. Brago, Zh. Vses. Khim. Obshch., 12:472 (1967).Google Scholar
  24. 24.
    L. Holleck and D. Marquarding, Naturwiss., 49:468 (1962).CrossRefGoogle Scholar
  25. 25.
    A. I. Lebedeva, Zh. Obshch. Khim., 18:1161 (1948).Google Scholar
  26. 26.
    U.S. Patent No. 1539297(1925); Chem. Abs., 19:2210 (1925).Google Scholar
  27. 27.
    U.S. Patent No. 1567159(1925); Chem. Abs., 20:607 (1926).Google Scholar
  28. 28.
    British Patent No. 949925 (1964); Chem. Abs., 61:3935 (1965).Google Scholar
  29. 29.
    R. Benesch and R. Benesch, J. Am. Chem. Soc., 73:3391 (1951).CrossRefGoogle Scholar
  30. 30.
    N. Hush, J. Electroanalyt. Chem., 6:34 (1963).CrossRefGoogle Scholar
  31. 31.
    A. Kirrmann and M. Kleine-Peter, Bull. Soc. Chim. France, 894(1957).Google Scholar
  32. 32.
    A. P. Tomilov and Yu. D. Smirnov, Zh. Obshch. Khim., 35:391 (1965).Google Scholar
  33. 33.
    L. V. Kaabak, M. I. Kabachnik, A. P. Tomilov, and S. L. Varshavskii, 36:2060 (1966).Google Scholar
  34. 34.
    P. Lanza, L. Griggio, and G. Semerano, Ricere Sci., 26:230 (1956).Google Scholar
  35. P. Lanza, L. Griggio, and G. Semerano, Ricere Sci., 27:110 (1957).Google Scholar
  36. 35.
    O. A. Reutov, Theoretical Problems in Organic Chemistry [in Russian], Izd. MGU, Moscow (1956), p. 264.Google Scholar
  37. 36.
    W. A. Waters, Chemistry of Free Radicals [Russian translation], IL, Moscow (1948), p. 460.Google Scholar
  38. 37.
    C. Walling, Free Radicals in Solution [Russian translation], IL, Moscow (1960).Google Scholar
  39. 38.
    A. S. Voitkevich, Thesis [in Russian], All-Union Scientific-Research Institute of Synthetic and Natural Aromatic Materials, Moscow (1949).Google Scholar
  40. 39.
    L. G. Feoktistov, A. P. Tomilov, Yu. D. Smirnov, and M. M. Gol’din, Élektrokhimiya, 1:887 (1965).Google Scholar
  41. 40.
    A. P. Tomilov, Zh. Obshch. Khim., 28:214 (1968).Google Scholar
  42. 41.
    R. A. Bullerwell, J. Polarograph. Soc, 9:7 (1963).Google Scholar
  43. 42.
    A. P. Tomilov and Yu. D. Smirnov, Zh. Vses. Khira Obshch., 10:101 (1965).Google Scholar
  44. 43.
    I. G. Sevast’yanova and A. P. Tomilov, Zh. Obshch. Khim., 33:2815 (1963).Google Scholar
  45. 44.
    L. G. Feoktistov, A. P. Tomilov, and I. G. Sevast’yanova’ Élektrokhimiya, 1:1300 (1965).Google Scholar
  46. 45.
    M. Baizer, J. Electrochem. Soc, 111:215 (1964).CrossRefGoogle Scholar
  47. 46.
    F. Penth, W. Haken, and E. Rabinowich, Ber., 57:1891 (1924).Google Scholar
  48. 47.
    E. Becqueral, Compt. Rend., 56:237 (1963).Google Scholar
  49. 48.
    A. Cossa, Ber., 1:117 (1868).Google Scholar
  50. 49.
    J. Mellor, Inorganic and Theoretical Chemistry, London-New York-Toronto, 11:36 (1954).Google Scholar
  51. 50.
    L. Gershbein and C. Hurd, J. Am. Chem Soc, 69:241 (1947).CrossRefGoogle Scholar
  52. 51.
    H. Salzberg and F. Mies, J. Electrochem. Soc, 105:64 (1958).CrossRefGoogle Scholar
  53. 52.
    R. Dotzer, Chem. Ind. Tech., 36:616 (1964).CrossRefGoogle Scholar
  54. 53.
    J. Gillet, J. Electrochem. Soc, 108:71 (1961).CrossRefGoogle Scholar
  55. 54.
    F. Hein, Z. Anorg. Allg. Chem., 141:161 (1924).CrossRefGoogle Scholar
  56. 55.
    H. French and M. Drane, J. Am. Chem. Soc, 52:4904 (1930).CrossRefGoogle Scholar
  57. 56.
    W. Evans and F. Lee, J. Am. Chem. Soc, 56:654 (1934).CrossRefGoogle Scholar
  58. 57.
    K. Ziegler and H. Lehmkuhl, Chem. Ing. Tech., 35:325 (1963).CrossRefGoogle Scholar
  59. 58.
    K. Ziegler and D. Stendel, Ann. Chem., 652:1 (1962).Google Scholar
  60. 59.
    W. Evans and R. Pearson, J. Am. Chem. Soc, 64:2865 (1942).CrossRefGoogle Scholar
  61. 60.
    U.S. Patent No. 3100181(1963).Google Scholar
  62. 61.
    U.S. Patent No. 3079311(1963).Google Scholar
  63. 62.
    U.S. Patent No. 3155602(1967).Google Scholar
  64. 63.
    U.S. Patent No. 3234112(1966).Google Scholar
  65. 64.
    U.S. Patent No. 3256161(1966).Google Scholar
  66. 65.
    U.S. Patent No. 3007857(1961).Google Scholar
  67. 66.
    British Patent No. 839172 (1958).Google Scholar
  68. 67.
    U.S. Patent No. 3007858(1961).Google Scholar
  69. 68.
    British Patent No. 882005 (1960).Google Scholar
  70. 69.
    U.S. Patent No. 3118825(1964).Google Scholar
  71. 70.
    U.S. Patent No. 3180810(1965).Google Scholar
  72. 71.
    K. Ziegler, H. G. Geliert, K. Zosel, and W. Lehmkuhl, Angew. Chem., 67:42 (1955).Google Scholar
  73. 72.
    U.S. Patent No. 2787626(1957).Google Scholar
  74. 73.
    K. Ziegler and H. Lehmkuhl, Z. Anorg. Allg. Chem., 283:414 (1956).CrossRefGoogle Scholar
  75. 74.
    Belgian Patent No. 543128 (1955).Google Scholar
  76. 75.
    British Patent No. 814609 (1959).Google Scholar
  77. 76.
    U.S. Patent No. 2985568(1961).Google Scholar
  78. 77.
    British Patent No. 848364 (1960).Google Scholar
  79. 78.
    British Patent No. 797090(1958).Google Scholar
  80. 79.
    German Patent No. 1150078 (1963).Google Scholar
  81. 80.
    British Patent No. 864393(1961).Google Scholar
  82. 81.
    U.S. Patent No. 3028319 (1962).Google Scholar
  83. 82.
    British Patent No. 3028318 (1962).Google Scholar
  84. 83.
    U.S. Patent No. 3254009(1966).Google Scholar
  85. 84.
    German Patent No. 1153754(1963).Google Scholar
  86. 85.
    U.S. Patent No. 3028320(1962).Google Scholar
  87. 86.
    R. Flannery, I. Thomas, and D. Trivich, J. Electrochem. Soc., 110:1054 (1962).CrossRefGoogle Scholar
  88. 87.
    K. Ziegler, Brennstoff. Chem., 40:209 (1950).Google Scholar
  89. 88.
    German Patent No. 1127900 (1962).Google Scholar
  90. 89.
    British Patent No. 842090(1960).Google Scholar
  91. 90.
    German Patent No. 1181200(1965).Google Scholar
  92. 91.
    K. Ziegler, Angew. Chem., 71:628 (1959).Google Scholar
  93. 92.
    U.S. Patent No. 3088885(1963).Google Scholar
  94. 93.
    U.S. Patent No. 3028322(1962).Google Scholar
  95. 94.
    U.S. Patent No. 2944948(1960).Google Scholar
  96. 95.
    U.S. Patent No. 3069334(1963).Google Scholar
  97. 96.
    German Patent No. 1166196(1964).Google Scholar
  98. 97.
    U.S. Patent No. 3159557(1964).Google Scholar
  99. 98.
    Belgian Patent No. 617628 (1962).Google Scholar
  100. 99.
    U.S. Patent No. 3254008(1966).Google Scholar
  101. 100.
    K. Ziegler, Angew. Chem., 72:565 (1960).CrossRefGoogle Scholar
  102. 101.
    Belgian Patent No. 590573(1963).Google Scholar
  103. 102.
    German Patent No. 1153371(1960).Google Scholar
  104. 103.
    K. Ziegler, Qrganoaluminium Compounds, New York (1960), p. 251.Google Scholar
  105. 104.
    British Patent No. 864394(1961).Google Scholar
  106. 105.
    German Patent No. 1120448 (1961).Google Scholar
  107. 106.
    U.S. Patent No. 3088957 (1963).Google Scholar
  108. 107.
    German Patent No. 1134672 (1962).Google Scholar
  109. 108.
    French Patent No. 1312426 (1963).Google Scholar
  110. 109.
    British Patent No. 923652 (1960).Google Scholar
  111. 110.
    U.S. Patent No. 3028352 (1962).Google Scholar
  112. 111.
    British Patent No. 895457 (1963).Google Scholar
  113. 112.
    U.S. Patent No. 3028323(1962).Google Scholar
  114. 113.
    L. Foster and G. Hooper, J. Am. Chem. Soc., 57:76 (1935).CrossRefGoogle Scholar
  115. 114.
    German Patent No. 1046617(1958).Google Scholar
  116. 115.
    U.S. Patent No. 2915440(1958).Google Scholar
  117. 116.
    U.S. Patent No. 2960450(1960).Google Scholar
  118. 117.
    K. N. Korotaevskii, E. N. Lysenko, S. Z. Smolyan, L. N. Monastyrskii, am L. V. Armenskaya, Zh. Obshch. Khim., 1:167 (1966).Google Scholar
  119. 118.
    W. Evans, F. Lee, and C. Lee, J. Am. Chem. Soc., 57:489 (1935).CrossRefGoogle Scholar
  120. 119.
    G. É. Svadkovskaya and S. A. Voitkevich, Usp. Khim., 29:364 (1960).Google Scholar
  121. 120.
    K. Ziegler, H. Lehmkuhl, and E. Lindner, Ber., 92:2320 (1959).CrossRefGoogle Scholar
  122. 121.
    U.S. Patent No. 3164538(1964).Google Scholar
  123. 122.
    U.S. Patent No. 2985568 (1961).Google Scholar
  124. 123.
    U.S. Patent No. 3180810(1965).Google Scholar

Copyright information

© Plenum Publishing Company Ltd. 1971

Authors and Affiliations

  • A. P. Tomilov
  • I. N. Brago

There are no affiliations available

Personalised recommendations