Prewaves in Reversible Systems

  • G. A. Tedoradze
  • E. Yu. Khmel’nitskaya
  • Ya. M. Zolotovitskii


Polarographic curves obtained for some typical reversible redox systems involving reduction at a dropping mercury electrode show certain differences from the expected form, but these differences are not observed at electrodes with a stationary surface. Curves of this type were first described by Brdička and Knobloch [1] in the reduction of riboflavin and then by Brdička [2] in the reduction of methylene blue. Müller [3] independently found a similar effect in the reduction of α-hydroxyphenazine in acidic solutions. These differences were manifested in the form of additional waves which preceded the normal reduction wave of the compound. The height of the prewave tended towards a maximum with increase in the concentration of the oxidized form. The relationship between its height and the outflow rate of the mercury also differed from the analogous relationship for a normal wave. An attempt by Müller [3, 4] to explain the formation of the prewave by the existence of reducible “tautomeric” forms of the substance was unsuccessful. Brdička proposed an explanation [2, 5, 6] which is now generally accepted.


Methylene Blue Phosphate Buffer Solution Anodic Process Capacity Curve Mercury Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. Brdička and E. Knobloch, Z. Elektrochem., 47:721 (1941).Google Scholar
  2. 2.
    R. Brdička, Z. Electrochem., 48:278 (1942).Google Scholar
  3. 3.
    O. H. Müller, J. Biol. Chem., 145:425 (1942).Google Scholar
  4. 4.
    O. H. Müller, Trans. Electrochem. Soc., 87:441 (1945).CrossRefGoogle Scholar
  5. 5.
    R. Brdička, Z. Electrochem., 48:686 (1942).Google Scholar
  6. 6.
    R. Brdička, Coll., 12:552 (1947).Google Scholar
  7. 7.
    W. Lorenz and E. O. Schmalz, Z. Electrochem., 62:301 (1958).Google Scholar
  8. 8.
    J. M. Los and C. K. Tompkins, J. Chem. Phys., 24:630 (1956).CrossRefGoogle Scholar
  9. 9.
    J. M. Los and C. K. Tompkins, Canad. J. Chem., 37:315 (1959).CrossRefGoogle Scholar
  10. 10.
    A. M. Mirri and P. Favero, La Rie. Sci., 28:2307 (1958).Google Scholar
  11. 11.
    B. Cohen and I. M. Kolthoff, J. Biol. Chem., 148:711 (1943).Google Scholar
  12. 12.
    E. D. Belokolos, Thesis [in Russian], Inst. Elektrokhimii Akad. Nauk SSSR, Moscow (1965).Google Scholar
  13. 13.
    M. Vořiškova, Coll., 12:607 (1947).Google Scholar
  14. 14.
    J. T. Stock, J. Chem. Soc., 586(1949).Google Scholar
  15. 15.
    J. T. Stock, J. Chem. Soc., 763(1949).Google Scholar
  16. 16.
    S. G. Mairanovskii, Zh. Fiz. Khim., 36:165 (1962).Google Scholar
  17. 17.
    E. C. Gregg and W. P. Tyler, J. Am. Chem. Soc., 72:4561 (1950).CrossRefGoogle Scholar
  18. 18.
    P. Zuman, Coll., 19:1140 (1954).Google Scholar
  19. 19.
    H. A. Laitinen and B. Mosier, J. Am. Chem. Soc., 80:2363 (1958).CrossRefGoogle Scholar
  20. 20.
    S. L. Gupta, Kolloid-Zeitschrift, 160:30 (1958).CrossRefGoogle Scholar
  21. 21.
    B. Breyer and T. Biegler, Coll., 25:3348 (1960).Google Scholar
  22. 22.
    G. A. Tedoradze, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1966), p. 23.Google Scholar
  23. 23.
    G. A. Tedoradze, Doctoral Thesis [in Russian], Inst. Élektrokhimii Akad. Nauk SSSR, Moscow (1965).Google Scholar
  24. 24.
    B. B. Damaskin, I. P. Mishutushkina, V. M. Gerovich, and R. I. Kaganovich, Zh. Fiz. Khim., 38:1797 (1964).Google Scholar
  25. 25.
    S. V. Tatwawdi and A. J. Bard, Analyt. Chem., 36:2 (1964).CrossRefGoogle Scholar
  26. 26.
    A. M. Hartley and G. S. Wilson, Analyt. Chem., 38:681 (1966).CrossRefGoogle Scholar
  27. 27.
    G. A. Tedoradze, E. Yu. Khmel’nitskaya, and Ya. M. Zolotovitskii, Élektro-khimiya, 3:200 (1967).Google Scholar
  28. 28.
    Ya. M. Zolotovitskii, G. A. Tedoradze, and A. B. Érshler, Élektrokhimiya, 1:828 (1965).Google Scholar
  29. 29.
    D. E. Smith, in: Electroanalytical Chemistry, Vol. 1, ed. A. J. Bard, Dekker, New York (1966), p. 1.Google Scholar
  30. 30.
    H. A. Laitinen and J. E. B. Randies, Trans. Faraday Soc., 51:54 (1955).CrossRefGoogle Scholar
  31. 31.
    M. Senda and P. Delahay, J. Phys, Chem., 65:1580 (1961).CrossRefGoogle Scholar
  32. 32.
    W. Lorenz, Z. Phys. Chem., 218:259 (1961).Google Scholar
  33. 33.
    J. Llopis, I. Fernandez-Biarge, and M. Perez-Fernandez, Electrochim. Acta, 1:130 (1959).CrossRefGoogle Scholar
  34. 34.
    M. Sluyters-Rehbach, B. Timmer, and J. H. Sluyters, Rec. Trav. Chim., 82:553 (1963)CrossRefGoogle Scholar
  35. M. Sluyters-Rehbach, J. H. Sluyters, Rec. Trav. Chim., 82:525, 536 (1963).CrossRefGoogle Scholar
  36. 35.
    J. E. B. Randies and K. W. Somerton, Trans. Faraday Soc., 48:937 (1952).CrossRefGoogle Scholar
  37. 36.
    J. E. B. Randies, in: Transactions of the Symposium on Electrode Processes Philadelphia, May 1959, Wiley, New York (1961).Google Scholar
  38. 37.
    R. Tamamushi and N. Tanaka, Z. Phys. Chem. (N. F.), 28:158 (1961).CrossRefGoogle Scholar
  39. 38.
    H. H. Bauer, D. L. Smith, and P. J. Elving, J. Am. Chem. Soc, 82:2094 (1960).CrossRefGoogle Scholar
  40. 39.
    A. M. Baticle and F. Perdu, J. Electroanalyt. Chem., 12:15 (1966).Google Scholar
  41. 40.
    B. Kastening, H. Gartmann, and L. Holleck, Electrochim. Acta, 9:741 (1964).CrossRefGoogle Scholar
  42. 41.
    H. L. Hung and D. E. Smith, J. Electroanalyt. Chem., 11:237, 425(1966).CrossRefGoogle Scholar
  43. 42.
    M. Senda, M. Senda, and J. Tachi, Rev. of Polarography (Japan), 10:4, 142 (1962).Google Scholar
  44. 43.
    A. Ehrenberg, Arkiv. for Kemi, 19:97 (1962).Google Scholar
  45. 44.
    R. Brdicka, Z. Elektrochem., 47:314 (1941).Google Scholar
  46. 45.
    J. Heyrovsky and J. Kuta, Principles of Polarography [Russian translation], Mir, Moscow (1965).Google Scholar
  47. 46.
    H. J. Lowe and W. M. Clark, J. Biol. Chem., 221:983 (1956).Google Scholar
  48. 47.
    B. Ke, Arch. Biochem. Biophys., 68:330 (1957).CrossRefGoogle Scholar
  49. 48.
    L. Michaelis and G. Schwarzenbach, J. Biol. Chem., 123:527 (1938).Google Scholar
  50. 49.
    H. Beinert, J. Am. Chem. Soc., 78:5323 (1956).CrossRefGoogle Scholar
  51. 50.
    Q. H. Gibson, V. Massey, and N. M. Atherton, Biochem. J., 85:369 (1962).Google Scholar
  52. 51.
    R. S. Mulliken, J. Am. Chem. Soc., 74:811 (1952).CrossRefGoogle Scholar
  53. 52.
    K. H. Hausser, Z. Naturforsch., 11a:20 (1956).Google Scholar
  54. 53.
    K. H. Hausser and J. N. Murrel, J. Chem. Phys., 27:500 (1957).CrossRefGoogle Scholar
  55. 54.
    A. Szent-Gyorgyi, Introduction to Submolecular Biology [in Russian], Nauka, Moscow (1964).Google Scholar
  56. 55.
    A. Ehrenberg, Electronic Aspects of Biochemistry, Academic Press, New York — London (1964), p. 379.Google Scholar
  57. 56.
    B. Pulman and A. Pulman, Quantum Biochemistry [Russian translation], Mir, Moscow (1965), p. 382.Google Scholar
  58. 57.
    K. Nakamoto, J. Am. Chem. Soc., 74:1739 (1952).CrossRefGoogle Scholar
  59. 58.
    L. Michaelis, M. R. Schubert, and S. Granik, J. Am. Chem. Soc., 62:204 (1940).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Ltd. 1971

Authors and Affiliations

  • G. A. Tedoradze
  • E. Yu. Khmel’nitskaya
  • Ya. M. Zolotovitskii

There are no affiliations available

Personalised recommendations