Advertisement

Electrochemical Generation of Free Radical Ions and Use of Electron Paramagnetic Resonance for Their Investigation

  • Ya. P. Stradyn’
  • R. A. Gavar

Abstract

Among the numerous methods used for the preparation of organic free radicals the most widespread have been the following [1–6]: 1) Thermal decomposition; 2) electric discharge in gases; 3) electron bombardment; 4) radiolysis with γ-rays; 5) photolysis. Alongside these methods in the last 10 years there has also been a rapid development of the electrochemical methods for generation of free radicals, which has a number of special characteristics and advantages over the other methods. Most frequently used for electrolytic generation of free radicals is electrolytic reduction, and more rarely electrolytic oxidation; as a rule radical anions are obtained in the first case and radical cations in the second:
$$R + e \to {R^{\cdot - }};{\text{ }}R - e \to {R^{\cdot + }}.$$

Keywords

Radical Anion Hyperfine Structure Resonance Cavity Hyperfine Coupling Constant Electrolytic Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. Ingram, Free Radicals as Studied by Electron Spin Resonance, Academic Press, New York (1958).Google Scholar
  2. 2.
    G. Minkoff, Frozen Free Radicals, Wiley, New York (1960).Google Scholar
  3. 3.
    A. Bass and H. Broida eds., Formation and Trapping of Free Radicals, Academic Press, New York (1960).Google Scholar
  4. 4.
    L. A. Blyumenfelⅉd, V. V. Voevodskii, and A. G. Semenov, Use of Electron Paramagnetic Resonance in Chemistry [in Russian], Izd. Sibirsk. Otd. Akad. Nauk SSSR, Novosibirsk (1962).Google Scholar
  5. 5.
    A. L. Buchachenko, Stable Free Radicals [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963).Google Scholar
  6. 6.
    M. S. Blois et al. eds., Symposium on Free Radicals in Biological Systems, Academic Press, New York (1961).Google Scholar
  7. 7.
    A. P. Tomilov and M. Ya. Fioshin, Usp. Khim., 32:60 (1963).Google Scholar
  8. 8.
    M. J. Allen, Organic Electrode Processes, Reinhold, New York (1958).Google Scholar
  9. 9.
    R. Pasternak, Helv. Chim. Acta, 31:735 (1948).Google Scholar
  10. 10.
    B. C. L. Weedon, Quart. Rev., 6:380 (1952).Google Scholar
  11. 11.
    V. D. Bezuglyi and Yu. P. Ponomarev, Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 56.Google Scholar
  12. 12.
    W. M. Clark, Oxidation-Reduction Potentials of Organic Systems, Baltimore (1960).Google Scholar
  13. 13.
    L. Holleck and H. Exner, Z. Elektrochem., 56:416 (1952).Google Scholar
  14. 14.
    B. Kastening and L. Holleck, Z. Elektrochem., 63:166 (1959).Google Scholar
  15. 15.
    L. Holleck and B. Kastening, Z. Elektrochem., 63:177 (1959).Google Scholar
  16. 16.
    G. J. Hoijtink, Rec. Trav. Chim., 71:1089 (1952).Google Scholar
  17. 17.
    G. J. Hoijtink, Rec. Trav. Chim., 72:903 (1953).Google Scholar
  18. 18.
    G. J. Hoijtink, Rec. Trav. Chim., 74:1525 (1955).Google Scholar
  19. 19.
    G. J. Hoijtink, Rec. Trav. Chim., 76:860 (1957).Google Scholar
  20. 20.
    S. Wawzonek, Talanta, 12:1229 (1965).Google Scholar
  21. 21.
    S. Wawzonek and A. Gundersen, J. Electrochem. Soc, 111:324 (1964).Google Scholar
  22. 22.
    W. Kemula and R. Sioda, Bul. Acad. Polon., Ser. Sci. Chim., 10:107 (1962).Google Scholar
  23. 23.
    J. Stradinš and S. Hillers, Tetrahedron Supplement: Proceedings of the International Symposium on Nitro Compounds, Warsaw, 1963 (1964), p. 409.Google Scholar
  24. 24.
    Ya. P. Stradyn’, G. O. Reikhmanis, and R. A. Gavar, Elektrokhimiya, 1:955 (1965).Google Scholar
  25. 25.
    O. H. Müller, Ann. New York Acad. Sci., 91:11 (1940).Google Scholar
  26. 26.
    S. G. Mairanovskii, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 2140 (1961).Google Scholar
  27. 27.
    D. Paul, A. Lipkin, and S. Weisman, J. Am. Chem. Soc, 78:116 (1956).Google Scholar
  28. 28.
    B. Kastening, Electrochim. Acta, 9:241 (1964).Google Scholar
  29. 29.
    B. Kastening, Coll. Czechosl. Chem. Communs., 30:4033 (1965).Google Scholar
  30. 30.
    V. D. Bezuglyi, L. Ya. Kheifets, and N. A. Sobina, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 49.Google Scholar
  31. 31.
    D. H. Geske and A. H. Maki, J. Am. Chem. Soc, 82:2671 (1960).Google Scholar
  32. 32.
    R. N. Adams, J. Electroanalyt. Chem., 8:151 (1964).Google Scholar
  33. 33.
    E. Friedheim and L. Michaelis, J. Biol. Chem., 91:355 (1931).Google Scholar
  34. 34.
    B. Elema, Rec Trav. Chim., 50:807 (1931).Google Scholar
  35. 35.
    L. Michaelis, Naturwiss., 22:461 (1931).Google Scholar
  36. L. Michaelis, J. Biol. Chem., 96:703 (1932)Google Scholar
  37. L. Michaelis, Chem. Rev., 16:243 (1935)Google Scholar
  38. L. Michaelis, J. Am. Chem. Soc, 63:2446 (1941).Google Scholar
  39. 36.
    L. Michaelis and S. Granick, J. Am. Chem. Soc, 63:1636 (1941).Google Scholar
  40. L. Michaelis and S. Granick, J. Am. Chem. Soc, 70, 624 (1948).Google Scholar
  41. 37.
    G. K. Budnikov, Usp. Khim., 33:590 (1964).Google Scholar
  42. 38.
    W. Kemula and Z. Kublik, Bull. Acad. Polon. Sci., Sér. Sci. Chim., Géol. Géogr., 6:653 (1958)Google Scholar
  43. W. Kemula and Z. Kublik, Nature, 182:793 (1958)Google Scholar
  44. W. Kemula and Z. Kublik, Roczniki Chem., 32:941 (1958).Google Scholar
  45. 39.
    A. V. Ilșyasov, Yu. M. Kargin, Ya. A. Levin, I. D. Morozova, N. N. Sotnikova, and V. Kh. Ivanova, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 53.Google Scholar
  46. 40.
    G. Hoijtink and J. van Schooten, Rec. Trav. Chim., 72:691 (1953).Google Scholar
  47. 41.
    G. J. Hoijtink, J. van Schooten, and W. I. Aalbersberg, Rec. Trav. Chim., 73:895 (1954).Google Scholar
  48. 42.
    S. Wawzonek, E. Blaha, R. Berkey, and M. Runner, J. Electrochem. Soc., 102:235 (1955).Google Scholar
  49. 43.
    S. Wawzonek and D. Wearrig, J. Am. Chem. Soc, 86:2067 (1959).Google Scholar
  50. 44.
    P. H. Given and M. E. Peover, Coll. Czechosl. Chem. Communs., 25:3195 (1960).Google Scholar
  51. 45.
    S. Wawzonek, R. Berkey, E. W. Blaha, and M. E. Runner, J. Electrochem. Soc., 103:546 (1956).Google Scholar
  52. 46.
    M. E. Runner, J. Electrochem. Soc, 103:456 (1956).Google Scholar
  53. 47.
    P. H. Given, M. E. Peover, and J. Schoen, J. Chem. Soc, 2674 (1958).Google Scholar
  54. 48.
    I. M. Kolthoff and T. B. Reddy, j. Electrochem. Soc, 108:980 (1961).Google Scholar
  55. 49.
    S. Wawzonek and A. Gunderson, J. Electrochem. Soc, 107:537 (1960).Google Scholar
  56. S. Wawzonek and A. Gunderson, J. Electrochem. Soc, 111:324 (1964).Google Scholar
  57. 50.
    Ya. P. Stradyn’ and I. Ya. Kravis, in: Electrochemical Processes Involving Organic Compounds [in Russian], Nauka, Moscow (1969).Google Scholar
  58. 51.
    V. P. Gul’tai, S. G. Mairanovskii, and N. K. Lisitsina, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 37.Google Scholar
  59. 52.
    Ya. P. Stradyn’ I. K. Tumane, O. Ya. Neiland, and G. Ya. Vanag, Dokl. Akad. Nauk SSSR, 166:631 (1966).Google Scholar
  60. 53.
    L. V. Kononenko, V. D. Bezuglyi, and V. N. Dmitrieva, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 57.Google Scholar
  61. 54.
    D. E. Austen, P. H. Given, D. S. Ingram, and M. E. Peover, Nature, 182:1784 (1958).Google Scholar
  62. 55.
    J. K. Bolton and G. K. Fraenkel, J. Chem. Phys., 40:3307 (1964).Google Scholar
  63. 56.
    Ph. H. Rieger, I. Bernai, W. H. Reinmuth, and G. F. Fraenkel, J. Am. Chem. Soc, 85:683 (1963).Google Scholar
  64. 57.
    J. E. Harriman and A. H. Maki, J. Chem. Phys. 39:778 (1963).Google Scholar
  65. 58.
    P. L. Nordio, G. Giacometti, and P. Favero, Ric Sci., 33, Ser. 2, Pt.II-A3, No. 4, 107 (1963).Google Scholar
  66. 59.
    J. P. Billon, G. Cauquis, and J. Combrisson, J. Chim. Phys., 61:374 (1964).Google Scholar
  67. 60.
    A. A. Galkin, Ya. L. Shanfarov, and A. V. Stefanishina, Zh. Eksper. Teor. Fiz., 32:1581 (1957).Google Scholar
  68. 61.
    Information Discussion of Electroanalytical Chemistry, Analyt. Chem., 31:1450 (1959).Google Scholar
  69. 62.
    K. Mobius, Z. Naturforsch., 20A:1093, 1117 (1965).Google Scholar
  70. 63.
    M. T. Jones, E. A. La Lancette, and R. E. Benson, J. Chem. Phys., 41:401 (1964).Google Scholar
  71. 64.
    B. I. Shapiro, V. M. Kazakova, and Ya. K. Syrkin, Zh. Strukt. Khim., 6:540 (1965).Google Scholar
  72. 65.
    D. H. Levy and R. J. Myers, J. Chem. Phys., 41:1062 (1964).Google Scholar
  73. 66.
    L. H. Piette, P. Ludvig, and R. N. Adams, Analyt. Chem., 34:916 (1962).Google Scholar
  74. 67.
    H. Rinkel and W. Windsch, Z. Phys. Chem. (Leipzig), 227:281 (1964).Google Scholar
  75. 68.
    P. Favero, G. Giacometti, P. L. Nordio, and G. Rigatti, Nuovo Cim., 24:21 (1962).Google Scholar
  76. 69.
    R. E. Sioda and W. S. Koski, J. Am. Chem. Soc, 87:5573 (1965).Google Scholar
  77. 70.
    K. H. Hauser, A. Häbich, and V. Franzen, Z. Naturforsch., 16a:836 (1961).Google Scholar
  78. 71.
    J. M. Hirschson and G. K. Fraenkel, Rev. Sci. Instr., 26:34 (1965).Google Scholar
  79. 72.
    R. A. Gavar, Ya. P. Stradyn’ and S. A. Giller, Izv. Akad. Nauk Latv. SSR, Ser. Khim., 381(1964).Google Scholar
  80. 73.
    R. A. Gavar, Ya. P. Stradyn’. and S. A. Giller, Zavod. Lab., 1:41 (1965).Google Scholar
  81. 74.
    A. H. Maki and D. H. Geske, J. Chem. Phys., 33:825 (1960).Google Scholar
  82. 75.
    D. H. Levy and R. J. Myers, J. Chem. Phys., 42:3731 (1965).Google Scholar
  83. 76.
    Ya. P. Stradyn’, R. A. Gavar, V. K. Grin’, and S. A. Giller, Teor. Éksper. Khim., 4:774 (1968).Google Scholar
  84. 77.
    R. A. Gavar, V. K. Grin’, and Ya. P. Stradynl, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 52.Google Scholar
  85. 78.
    B. Kastening, Z. Analyt. Chem., 224:196 (1967).Google Scholar
  86. 79.
    P. Ludvig, Th. Layloff, and R. N. Adams, J. Am. Chem. Soc, 86:4568 (1964).Google Scholar
  87. 80.
    J. Q. Chambers, Th. Layloff, and R. N. Adams, J. Phys. Chem., 68:661 (1964).Google Scholar
  88. 81.
    D. H. Levy and R. J. Myders, J. Chem. Phys., 43:3063 (1965).Google Scholar
  89. 82.
    P. H. Given, J. Chem. Soc., 2684(1958).Google Scholar
  90. 83.
    M. B. Gazizov, A. V. Il’yasov, A. I. Razumov, G. A. Savicheva, and N. N. Sotnikova, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 54.Google Scholar
  91. 84.
    Yu. P. Kitaev, A. V. Il’yasov, I. M. Skrebkova, and I. D. Morozova, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 55.Google Scholar
  92. 85.
    L. H. Piette, P. Ludvig, and R. N. Adams, J. Am. Chem. Soc, 83:3909 (1961).Google Scholar
  93. 86.
    R. A. Gavar, Ya. P. Stradyn’ and S. A. Giller, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 50.Google Scholar
  94. 87.
    T. Kitagawa, Th. Layloff, and R. Adams, Analyt. Chem., 36:925 (1964).Google Scholar
  95. 88.
    J. G. Powles and M. H. Mosley, Proc Phys. Soc, 78:370 (1961).Google Scholar
  96. 89.
    P. Ludvig and R. N. Adams, J. Chem. Phys., 37:828 (1962).Google Scholar
  97. 90.
    J. Deguchi, Bull. Chem. Soc, Japan, 35:598 (1962).Google Scholar
  98. 91.
    S. J. Weissman, J. Chem. Phys., 25:890 (1956).Google Scholar
  99. 92.
    S. Aono, Progr. Theoret. Phys. (Kyoto), 21:779 (1959).Google Scholar
  100. 93.
    H. McConnell, J. Chem. Phys., 25:890 (1956).Google Scholar
  101. 94.
    I. D. Morozova, Usp. Khim., 31:1231 (1962).Google Scholar
  102. 95.
    J. H. Beynon, Mass Spectrometry and Its Use in Organic Chemistry, Elsevier, London—New York (1960).Google Scholar
  103. 96.
    L. G. Stoodley, J. Electron. Control, 14:531 (1963).Google Scholar
  104. 97.
    C. Lagercrantz and M. Yhland, Acta Chem. Scand., 16:1043, 1799, 1808 (1962).Google Scholar
  105. 98.
    C. S. Johnson, Jr. and H. S. Gutowsky, J. Chem. Phys., 39:58 (1963).Google Scholar
  106. 99.
    E. E. Beasley and R. S. Anderson, J. Chem. Phys., 40:2565 (1964).Google Scholar
  107. 100.
    H. Berg, H. Schweiss, and D. Tresselt, Exper. Techn. Phys., 12:116 (1964).Google Scholar
  108. 101.
    H. Mauser and H. Heitzek, Z. Naturforsch., 20b:200 (1965).Google Scholar
  109. 102.
    R. Livingston and H. Zoldes, J. Am. Chem. Soc., 88:4333 (1966).Google Scholar
  110. 103.
    T. E. Gough and C. R. Symons, Trans. Faraday Soc., 22:269, 279 (1966).Google Scholar
  111. 104.
    F. Schneider, K. Möbius, and M. Plato, Angew. Chem., 77:888 (1965).Google Scholar
  112. 105.
    W. M. Fox, J. M. Gross, and M. C. R. Symons, J. Chem. Soc, A13:448 (1966).Google Scholar
  113. 106.
    A. Carrington, Quart. Rev. Chem. Soc., 17:67 (1963).Google Scholar
  114. 107.
    B. J. McClelland, J. Chem. Rev., 64:301 (1964).Google Scholar
  115. 108.
    B. I. Shapiro, V. M. Kazakova, and Ya. K. Syrkin, Dokl. Akad. Nauk SSSR, 171:156 (1966).Google Scholar
  116. 109.
    T. R. Tuttle and S. J. Weissman, J. Am. Chem. Soc, 80:5342 (1958).Google Scholar
  117. 110.
    J. R. Bolton and A. Carrington, Mol. Phys., 4:497 (1961).Google Scholar
  118. 111.
    J. R. Tuttle, J. Am. Chem. Soc, 84:2839 (1942).Google Scholar
  119. 112.
    N. M. Atherton and S. J. Weissman, J. Chem. Soc, 83:1330 (1961).Google Scholar
  120. 113.
    S. Aono and K. Oohashi, Progr. Theor. Phys. (Kyoto), 30:162 (1963).Google Scholar
  121. 114.
    E. De’Boer, Rec. Trav. Chim., 84:609 (1965).Google Scholar
  122. 115.
    N. Hirota and R. Krellick, J. Am. Chem. Soc, 83:614 (1966).Google Scholar
  123. 116.
    Ch. S. Johnson, Jr., and R. Chang, J. Chem. Phys., 43:3183 (1965).Google Scholar
  124. 117.
    R. Pointeau, J. Favéde, and P. Delhaés, Proc XII Coloque Ampére, Amsterdam (1964), p. 276.Google Scholar
  125. 118.
    J. M. Fritsch, Th. P. Layloff, and R. N. Adams, J. Am. Chem. Soc, 87:1724 (1965).Google Scholar
  126. 119.
    J. R. Bolton and G. K. Fraenkel, J. Chem. Phys., 41:944 (1964).Google Scholar
  127. 120.
    P. A. Malachesky, L. S. Marcoux, and R. N. Adams, J. Phys. Chem., 70:2064 (1966).Google Scholar
  128. 121.
    K. Mobius and M. Plato, Z. Naturforsch, 19a:1240 (1964).Google Scholar
  129. 122.
    J. Bernai, P. H. Rieger, and G. K. Fraenkel, J. Chem. Phys., 37:1489 (1962).Google Scholar
  130. 123.
    P. L. Nordio, M. V. Pavan, and G. Rigatti, Ric Sci., Ser. 2r, A3:851 (1963).Google Scholar
  131. 124.
    M. Iwaizumi and T. Isobe, Bull. Chem. Soc Japan, 37:1651 (1964).Google Scholar
  132. 125.
    Th. Katz, M. Yoshida, and L. C. Siew, J. Am. Chem. Soc, 87:4516 (1965).Google Scholar
  133. 126.
    E. W. Stone and A. H. Maki, J. Chem. Phys., 39:1635 (1963).Google Scholar
  134. 127.
    B. L. Barton and G. K. Fraenkel, J. Chem. Phys., 41:695 (1964).Google Scholar
  135. 128.
    M. R. Das and G. K. Fraenkel, J. Chem. Phys., 42:792 (1965).Google Scholar
  136. 129.
    D. H. Geske and G. R. Padmanbhan, J. Am. Chem. Soc, 87:1651 (1965).Google Scholar
  137. 130.
    C. S. Johnston, Jr., R. E. Visco, H. S. Gutowsky, and A. M. Hartley, J. Chem. Phys., 37:1580 (1962).Google Scholar
  138. 131.
    F. Gerson and W. L. F. Armarego, Helv. Chim. Acta, 48:112 (1965).Google Scholar
  139. 132.
    E. W. Stone and A. H. Maki, J. Chem. Phys., 36:1944 (1962).Google Scholar
  140. 133.
    J. Gendel, J. H. Freed, and G. K. Fraenkel, J. Chem. Phys., 41:949 (1964).Google Scholar
  141. 134.
    T. Fujinaga, J. Deguchi, and K. Umemoto, Bull. Chem. Soc Japan, 37:822 (1964).Google Scholar
  142. 135.
    D. H. Geske and A. L. Balch, J. Phys. Chem., 68:3423 (1964).Google Scholar
  143. 136.
    R. Dehl and G. K. Fraenkel, J. Chem. Phys., 39:1793 (1963).Google Scholar
  144. 137.
    P. L. Kolker and W. A. Waters, Chem. and Ind., 1205 (1963).Google Scholar
  145. 138.
    P. H. Rieger and G. K. Fraenkel, J. Chem. Phys., 37:2811 (1962).Google Scholar
  146. 139.
    N. Steinberger and G. K. Fraenkel, J. Chem. Phys., 40:723 (1964).Google Scholar
  147. 140.
    E. W. Stone and A. H. Maki, J. Chem. Phys., 38:1999 (1963).Google Scholar
  148. 141.
    A. H. Maki and D. H. Geske, J. Am. Chem. Soc, 83:1852 (1960).Google Scholar
  149. 142.
    P. H. Rieger and G. K. Fraenkel, J. Chem. Phys., 39:609 (1963).Google Scholar
  150. 143.
    G. A. Russell, E. Th. Strom, E. R. Talaty, and St. A. Weiner, J. Am. Chem. Soc., 88:1998 (1966).Google Scholar
  151. 144.
    F. Tonard, Compt. Rend., 280:2793 (1965).Google Scholar
  152. 145.
    F. Tonard and S. Odiot, J. Chim. Phys., 63:227 (1966).Google Scholar
  153. 146.
    M. T. Melchior and A. H. Maki, J. Chem. Phys., 34:471 (1961).Google Scholar
  154. 147.
    H. J. Lee and R. N. Adams, Analyt. Chem., 34:1587 (1962).Google Scholar
  155. 148.
    Z. Galus and R. N. Adams, J. Chem. Phys., 36:2814 (1962).Google Scholar
  156. 149.
    J. M. Fritsch and R. N. Adams, J. Chem. Phys., 43:1887 (1965).Google Scholar
  157. 150.
    T. M. McKinney and D. H. Geske, J. Am. Chem. Soc, 87:3013 (1965).Google Scholar
  158. 151.
    K. Kuwata and D. H. Geske, J. Am. Chem. Soc, 86:2101 (1964).Google Scholar
  159. 152.
    P. H. Rieger, J. Bernal, and G. K. Fraenkel, J. Am. Chem. Soc., 83:3918 (1961).Google Scholar
  160. 153.
    P. H. Rieger and G. K. Fraenkel, J. Chem. Phys., 37:2795 (1962).Google Scholar
  161. 154.
    P. H. Fischer and C. A. McDowell, J. Am. Chem. Soc, 85:1694 (1963).Google Scholar
  162. 155.
    P. L. Nordio, M. V. Pavan, and C. Corvaja, Trans. Faraday Soc, 60:1985 (1964).Google Scholar
  163. 156.
    Ya. P. Stradyn’, Polarography of Organic Nitro Compounds [in Russian], Izd. Akad. Nauk LatvSSR, Riga (1961).Google Scholar
  164. 157.
    L.H. Piette, P. Ludvig, and R. N. Adams, J. Am. Chem. Soc, 84:4212 (1962).Google Scholar
  165. 158.
    F. Gerson and R. N. Adams, Helv. Chim. Acta, 48:1539 (1965).Google Scholar
  166. 159.
    E. Brunner, R. Mücke, and F. Dön, Z. Phys. Chem., Neue Folge, 60:30 (1966).Google Scholar
  167. 160.
    J. H. Freed, P. H. Rieger, and G. K. Fraenkel, J. Chem. Phys., 37:1881 (1962).Google Scholar
  168. 161.
    D. H. Geske and J. L. Rangle, J. Am. Chem. Soc, 83:3532 (1961).Google Scholar
  169. 162.
    W. M. Gulick and D. H. Geske, J. Am. Chem. Soc, 87:4049 (1965).Google Scholar
  170. 163.
    T. Kitagawa, Th. P. Layloff, and R. N. Adams, Analyt. Chem., 35:1086 (1963).Google Scholar
  171. 164.
    D. H. Geske, J. L. Rangle, M. A. Bambenek, and A. L. Balch, J. Am. Chem. Soc., 86:987 (1964).Google Scholar
  172. 165.
    J. Bernai and G. K. Fraenkel, J. Am. Chem. Soc, 86:1671 (1964).Google Scholar
  173. 166.
    J. H. Freed and G. K. Fraenkel, J. Chem. Phys., 41:699 (1964).Google Scholar
  174. 167.
    N. N. Vylegzhanina, A. V. Il’yasov, and Yu. P. Kitaev, Zh. Strukt. Khim., 6:153 (1965).Google Scholar
  175. 168.
    J. P. Colpa and J. R. Bolton, Mol. Phys., 6:273 (1963).Google Scholar
  176. 169.
    A. S. Degtyarev, L. N. Ganyuk, A. M. Golubenkova, and A. I. Brodskii, Dokl. Akad. Nauk SSSR, 157:1406 (1964).Google Scholar
  177. 170.
    R. L. Hansen, R. H. Young, and P. E. Toren, J. Phys. Chem., 70:1657 (1966).Google Scholar
  178. 171.
    A. I. Brodskii, L. L. Gordienko, and A. S. Degtyarev, Zh. Vses. Khim. Obshch. im. D. I. Mendeleeva, 11:196 (1966).Google Scholar
  179. 172.
    F. G. Valitova, A. V. Il’yasov, N. N. Sotnikova, and S. Yu. Baigildina, Zh. Strukt. Khim., 5:777 (1965).Google Scholar
  180. 173.
    J. H. Freed and G. K. Fraenkel, J. Chem. Phys., 40:1815 (1964).Google Scholar
  181. 174.
    J. H. Freed and G. K. Fraenkel, J. Chem. Phys., 37:1156 (1962).Google Scholar
  182. 175.
    S. H. Glarum and J. H. Marshall, J. Chem. Phys., 41:2182 (1964).Google Scholar
  183. 176.
    E. A. C. Lucken, J. Chem. Soc., A, 991 (1966).Google Scholar

Copyright information

© Plenum Publishing Company Ltd. 1971

Authors and Affiliations

  • Ya. P. Stradyn’
  • R. A. Gavar

There are no affiliations available

Personalised recommendations