Advertisement

Relations of Membrane Functions and Ultrastructure

  • Daniel Branton

Abstract

Thin sections of biological membranes examined by electron microscopy appear as two dark lines separated by a lighter space (1). The dark lines have been equated to proteins and other polar groups, the intervening lighter space to lipid fatty acids (2). However, other interpretations are possible (3, 4), and the electron microscope observations do not validate any one molecular model of the biological membrane (5). More direct information regarding the molecular configurations within biological membranes are provided by physical probes such as differential scanning calorimetry (6), X-ray diffraction (7, 8), nuclear magnetic resonance (9), and electron paramagnetic resonance (10, 11). All of these probes show that a major portion of the lipids in a variety of membrane systems are in a bimolecular layer; protein must cover large portions of this bilayer, but the other proteins may penetrate through its hydrophobic center.

Keywords

Nuclear Magnetic Resonance Differential Scanning Calorimetry Electron Paramagnetic Resonance Biological Membrane Electron Microscope Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. D. Robertson, Biochem. Symp. 16, 3 (1959).Google Scholar
  2. 2.
    W. Stoeckenius, Electron Microsc., Proc. Eur. Conf. 2, 716 (1960).Google Scholar
  3. 3.
    E. D. Korn, Sciences 153, 1491 (1966).CrossRefGoogle Scholar
  4. 4.
    D. Branton and R. B. Park, Papers on Biological Membrane Structure ( Little Brown and Company, Boston, 1968 ).Google Scholar
  5. 5.
    W. Stoeckenius and D. M. Engelman, J. Cell Biol. 42, 613 (1969).PubMedCrossRefGoogle Scholar
  6. 6.
    J. M. Steim, M. E. Tourtellotte, J. C. Reinert, R N. McElhaney, R. L. Rader, Proc. Nat. Acad. Sci. U.S.A. 63, 104 (1969).CrossRefGoogle Scholar
  7. 7.
    D. M. Engelman, J. Mol. Biol. 47, 115 (1969).CrossRefGoogle Scholar
  8. 8.
    D. L. D. Caspar and R. H. Kirschner, Nature, submitted.Google Scholar
  9. 9.
    S. Kaufman, J.M. Steim, J. H. Gibbs, Nature 225, 743 ( 1970CrossRefGoogle Scholar
  10. 10.
    W. L. Hubbell and H. M. McConnell, Proc. Nat. Acad. Sci. U.S.A. 64, 20 (1969).CrossRefGoogle Scholar
  11. 11.
    M. E. Tourtellotte, D. Branton, A. D. Keith, Proc. Nat. Acad. Sci. U. S. A. 66, 909 (1970).CrossRefGoogle Scholar
  12. 12.
    R. L. Steere, J. Biophys. Biochem. Cytol. 3, 45 (1957).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Moor and K. Múhlethaler, J. Cell Biol. 17, 609 (1963).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Branton, Proc. Nat. Acad. Sci. U.S.A. 55, 1048 (1966).CrossRefGoogle Scholar
  15. 15.
    D Branton, Annu. Rev. Plant Physiol. 20, 209 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Daniel Branton
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations