Biomembranes pp 191-256 | Cite as

The Structure and Function of Sarcoplasmic Reticulum Membranes

  • Anthony Martonosi


The first clear description of sarcoplasmic reticulum as a network of filaments located in the sarcoplasm between myofibrils was given by Emilio Veratti (1902, 1961). From then, until its rediscovery 50 years later (Bennett and Porter, 1953; Bennett, 1955), this membrane system was completely forgotten. As Bennett wrote (1960), “it is astonishing that a structure once described as accurately and as beautifully as the reticulum was by Veratti (1902) should have so quickly become almost lost to man’s knowledge.”


ATPase Activity Sarcoplasmic Reticulum Microsomal Membrane Adenosine Triphosphatase Frog Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, M. B., Katzman, R., Gregor, H. P., 1964, Aqueous dispersions of phosphatidylserine, J. Biol. Chem. 239: 70.PubMedGoogle Scholar
  2. Abramson, M. B., Colacicco, G., Curci, R., and Rapport, M. M., 1968, Ionic properties of acidic lipids. Phosphatidylinositol, Biochemistry 7:1692.PubMedGoogle Scholar
  3. Albuquerque, E. X., and Thesleff, S., 1967, Influence of phospholipase Con some electrical properties of the skeletal membranes, J. Physiol. 190:123.PubMedGoogle Scholar
  4. Albuquerque, E. X., and Thesleff, S., 1968a, Effects of phospholipase A and lysolecithin on some electrical properties of the muscle membrane, Acta Physiol. Scand. 72(1–2):248.Google Scholar
  5. Albuquerque, E. X., and Thesleff, S., 1968b, The effect of calcium on the skeletal muscle membrane after treatment with phospholipase C, Acta Physiol. Scand. 72 (3):310.Google Scholar
  6. Andersson-Cedergren, E., 1959, Ultrastructure of motor end plate and sarcoplasmic components of mouse skeletal muscle fiber as revealed by three-dimensional reconstructions from serial sections, J. Ultrastructure Res. Suppl. 1:1.Google Scholar
  7. Ansell, G. B., and Spanner, S., 1965, The action of phospholipase C on ethanolamine plasmalogen (2-acyl-1-alkenylglycerylphosphorylethanolamine), Biochem. J. 97:375.PubMedGoogle Scholar
  8. Arai, K. I., and Watanabe, S., 1968, A study of troponin, a myofibrillar protein from rabbit skeletal muscle, J. Biol. Chem. 243:5670.PubMedGoogle Scholar
  9. Ashley, C., Caldwell, P. C., Lowe, A. G., Richard, C. D., and Schirmer, H., 1965, The amount of injected EGTA needed to suppress the contractile responses of single Maia muscle fibers and its relation to the amount of calcium released during contraction, J. Physiol. 179:32P.Google Scholar
  10. Ashworth, L. A. E., and Green, C., 1966, Plasma membranes: Phospholipid and sterol content, Science 151:210.PubMedGoogle Scholar
  11. Axelsson, J., and Thesleff, S., 1958, Activation of the contractile mechanism in striated muscle, Acta Physiol. Scand. 44:55.PubMedGoogle Scholar
  12. Azzone, G. F., Azzi, A., Rossi, C., and Milic, G., 1966, Mechanism of calcium ion transport in the sarcotubular vesicles, Biochem. Z. 345:3222.Google Scholar
  13. Baird, G. D., and Perry, S. V., 1960, The inhibitory action of relaxing-factor preparations on the myofibrillar adenosine triphosphatase, Biochem. J. 77:262.PubMedGoogle Scholar
  14. Baltscheffsky, M., 1964, Calcium uptake and relaxing activity in a fractionated rabbit muscle homogenate, Biochem. Biophys. Res. Commun. 14:296.PubMedGoogle Scholar
  15. Balzer, H., Makinose, M., and Hasselbach, W., 1967, Die Hemmung des aktiven Calcium-Transportes des Membran des sarkoplasmatischen Reticulums durch Reserpin, Prenylamin, Chlorpromazin und Imipramin, Naunyn-Schmiedebergs Arch. Pharmak. Exp. Path. 257:7.Google Scholar
  16. Balzer, H., Makinose, M., and Hasselbach, W., 1968a, The inhibition of the sarcoplasmic Ca pump by prenylamine, reserpine, chlorpromazine and imipramine, NaunynSchmiedebergs Arch. Pharmak. Exp. Path. 260:444.Google Scholar
  17. Balzer, H., Makinose, M., Fiehn, W., and Hasselbach, W., 1968b, The binding of Ca transport inhibitors, reserpine, chlorpromazine and prenylamine to the lipids of the membrane of the sarcoplasmic reticulum, Naunyn-Schmiedebergs Arch. Pharmak. Exp. Path. 260:456.Google Scholar
  18. Bangham, A. D., 1963, Physical structure and behavior of lipids and lipid enzymes, Advan. Lipid Res. 1:65.Google Scholar
  19. Barton, P. G., 1968, The influence of surface charge density of phosphatides on the binding of some cations, J. Biol. Chem. 243:3884.PubMedGoogle Scholar
  20. Baskin, R. J., and Deamer, D. W., 1969, Ultrastructure and physical properties of fragmented sarcoplasmic reticulum, Abst. Biophys. Soc. Biophys. J. 9:A238.Google Scholar
  21. Bendall, J. R., 1952, Effect of the `Marsh factor,’ on the shortening of muscle fibre models in the presence of adenosine triphosphate, Nature 170:1058.PubMedGoogle Scholar
  22. Bendall, J. R., 1953, Further observations on a factor (the `Marsh factor’) effecting relaxation of ATP-shortened muscle-fibre models, and the effect of Ca and Mg ions upon it, J. Physiol. (London) 121:232.Google Scholar
  23. Bendall, J. R., 1958, Relaxation of glycerol treated muscle fibers by ethylenediamine tetra-acetate, Arch. Biochem. Biophys. 73:283.PubMedGoogle Scholar
  24. Benedetti, E. L., and Emmelot, P., 1965, Electron microscopic observations on negatively stained plasma membranes isolated from rat liver, J. Cell Biol. 26:299.PubMedGoogle Scholar
  25. Bennett, H. S., 1955, Modern concepts of structure of striated muscle, Am. J. Phys. Med. 34:46.PubMedGoogle Scholar
  26. Bennett, H. S., 1960, The structure of striated muscle as seen by the electron microscope, In “The Structure and Function of Muscle” (G. Boume, ed.), Vol. I, p. 137, Academic Press, New York.Google Scholar
  27. Bennett, H. S., and Porter, K. R., 1953, An electron microscope study of sectioned breast muscle of the domestic fowl, Am. J. Anat. 93:61.PubMedGoogle Scholar
  28. Berne, R. M., 1962, Intracellular localization of the skeletal-muscle relaxing factor, Biochem. J. 83:364.PubMedGoogle Scholar
  29. Bianchi, C. P., 1961, Calcium movements in muscle, Circulation 24:518.Google Scholar
  30. Bianchi, C. P., 1962, Kinetics of radiocaffeine uptake and release in frog sartorius, J. Pharm. Exp. Therap. 138:41.Google Scholar
  31. Bianchi, C. P., 1968, Pharmacological actions on excitation-contraction coupling in striated muscle, Fed. Proc. 27:126.PubMedGoogle Scholar
  32. Bianchi, C. P., and Shanes, A. M., 1959, Calcium influx in skeletal muscle at rest, during activity and during K contracture, J. Gen. Physiol. 42:803.PubMedGoogle Scholar
  33. Bianchi, C. P., and Strobel, G. E., 1968, Modes of action of local anaesthetics in nerve and muscle in relation to their uptake and distribution, Trans. N. Y. Acad. Sci. Ser. 1130:1082.Google Scholar
  34. Blaustein, M. P., 1967, Phospholipids as ion exchangers: Implications for a possible role in biological membrane permeability and anaesthesia, Biochim. Biophys. Acta 135:653.PubMedGoogle Scholar
  35. Blaustein, M. P., and Goldman, D. E., 1966, Action of anionic and cationic nerve blocking agents: Experiment and interpretation, Science 153:429.PubMedGoogle Scholar
  36. Blecher, M., 1965, Phospholipase C and mechanisms of action of insulin and cortisol on glucose entry into free adipose cells, Biochem. Biophys. Res. Commun. 21:202.PubMedGoogle Scholar
  37. Blinks, J. R., Mattingly, P. H., Jewell, B. R., and van Leeuwen, M., 1969, On the suitability of aequorin as a calcium indicator for physiological studies, Biophys. J. 9:97.Google Scholar
  38. Bondani, A., and Karler, R., 1966, Effect of drugs on in vitro uptake of Ca2+ by microsomes, Pharmacologist 8:184.Google Scholar
  39. Bozler, E., 1954, Relaxation in extracted muscle fibers, J. Gen. Physiol. 38:149.PubMedGoogle Scholar
  40. Bozler, E., 1955, Binding of calcium and magnesium by the contractile elements, J. Gen. Physiol. 38:735.PubMedGoogle Scholar
  41. Brenner, S., and Home, R. W., 1959, A negative staining method for high resolution electron microscopy of viruses, Biochim. Biophys. Acta 34:103.PubMedGoogle Scholar
  42. Briggs, A. H., and Kuhn, E., 1968, Calcium uptake in isolated skeletal muscle `sarcoplasmic reticulum’ from rats with drug induced myotonia, Proc. Soc. Exp. Biol. Med. 128:677.PubMedGoogle Scholar
  43. Briggs, F. N., Gertz, E. W., and Hess, M. L., 1966, Calcium uptake by cardiac vesicles: Inhibition by amytal and reversal by ouabain, Biochem. Z. 345:122.Google Scholar
  44. Bruckdorfer, K. R., Edwards, P. A., and Green, C., 1968, Properties of aqueous dispersions of phospholipid and cholesterol, Europ. J. Biochem. 4:506.PubMedGoogle Scholar
  45. Caldwell, P. C., 1964, Calcium and the contraction of Maia muscle fibers, Proc. Roy. Soc. London Ser. B 160:512.Google Scholar
  46. Caldwell, P. C., and Walster, G. E., 1961, A cannulated crab muscle fibre, J. Physiol. 157: 36P.Google Scholar
  47. Caldwell, P. C., and Walster, G. E., 1963, Studies on the micro-injection of various substances into crab muscle fibres, J. Physiol. 169:353.PubMedGoogle Scholar
  48. Carsten, M. E., 1964, The cardiac calcium pump, Proc. Nat. Acad. Sci. 52:1456.PubMedGoogle Scholar
  49. Carsten, M. E., 1969, Role of calcium binding by sarcoplasmic reticulum in the contraction and relaxation of uterine smooth muscle, J. Gen. Physiol. 53:414.PubMedGoogle Scholar
  50. Carsten, M. E., and Mommaerts, W. F. H. M., 1964, The accumulation of calcium ions by sarcotubular vesicles, J. Gen. Physiol. 48:183.PubMedGoogle Scholar
  51. Carvalho, A. P., 1966, Binding of cations by microsomes from rabbit skeletal muscle, J. Cell Physiol. 67:73.PubMedGoogle Scholar
  52. Carvalho, A. P., 1968a, Effect of potentiators of muscle contraction on binding of cations by sarcoplasmic reticulum, J. Gen. Physiol. 51:427.Google Scholar
  53. Carvalho, A. P., 1968b, Calcium binding properties of sarcoplasmic reticulum as influenced by ATP, caffeine, quinine, and local anaesthetics, J. Gen. Physiol. 52:622.Google Scholar
  54. Carvalho, A. P., and Leo, B., 1967, Effects of ATP on the interaction of Ca, Mg, and K with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle, J. Gen. Physiol. 50:1327.PubMedGoogle Scholar
  55. Carvalho, A. P., Sanui, H., and Pace, N., 1963, Calcium and Mg binding properties of cell membrane materials, J. Cell. Comp. Physiol. 62:311.Google Scholar
  56. Carvalho, A. P., Sanui, H., and Pace, N., 1965, Binding of Ca and Mg by lipoprotein and nucleoprotein subfractions of rat liver cell microsomes, J. Cell. Comp. Physiol. 66:57.Google Scholar
  57. Chaberek, S., and Martell, A. E., 1959, “Organic Sequestering Agents,” Wiley, New York. Chance, B., 1970, Fluorescent probe environment and the structural and charge changes in energy coupling of mitochondrial membranes, Proc. Natl. Acad. Sci. 67:560Google Scholar
  58. Changeux, J. P., and Podleski, T. R., 1968, On the excitability and cooperativity of the electroplax membrane, Proc. Nat. Acad. Sci. 59:944.PubMedGoogle Scholar
  59. Changeux, J. P., Thiery, J., Tung, Y., and Kittel, C., 1967, On the cooperativity of biological membranes, Proc. Nat. Acad. Sci. 57:335.PubMedGoogle Scholar
  60. Chimoskey, J. E., and Gergely, J., 1968, Effect of ions on sarcoplasmic reticulum fragments, Arch. Biochem. Biophys. 128:601.PubMedGoogle Scholar
  61. Cohen, L. B., Keynes, R. D., and Hille, B., 1968, Light scattering and birefringence changes during nerve activity, Nature 218:438.PubMedGoogle Scholar
  62. Coleman, R., Finean, J. B., and Thompson, J. E., 1969, Structural and functional modifications induced in muscle microsomes by trypsin, Biochim. Biophys. Acta 173:51.PubMedGoogle Scholar
  63. Conn, H. L., 1966, Some considerations of quinidine and procaine amide action at the cellular level, In “The Myocardial Cell” (S. A. Briller and H. L. Conn, Jr., eds.), p. 269, University of Pennsylvania Press, Philadelphia.Google Scholar
  64. Conover, T. E., Prairie, R. L., and Racker, E., 1963, Partial resolution of the enzymes catalyzing oxidative phosphorylation. III. A new coupling factor required by submitochondrial particles extracted with phosphatides, J. Biol. Chem. 238:2831.PubMedGoogle Scholar
  65. Costantin, L. L., and Podolsky, R. J., 1964, Calcium inactivation and relaxation of isolated myofibrils, Fed. Proc. 23:420.Google Scholar
  66. Costantin, L. L., and Podolsky, R. J., 1965, Calcium localization and the activation of striated muscle fibers, Fed. Proc. 24:1141.PubMedGoogle Scholar
  67. Costantin, L. L., and Podolsky, R. J., 1966, Evidence for depolarization of the internal membrane system in activation of frog semitendinosus muscle, Nature 210:483.PubMedGoogle Scholar
  68. Costantin, L. L., and Podolsky, R. J., 1967, Depolarization of the internal membrane system in the activation of frog skeletal muscle, J. Gen. Physiol. 50:1101.PubMedGoogle Scholar
  69. Costantin, L. L., Franzini-Armstrong, C., and Podolsky, R. J., 1965, Localization of calcium-accumulating structures in striated muscle fibers, Science 147:158.PubMedGoogle Scholar
  70. Costantin, L. L., Podolsky, R. J., and Tice, L. W., 1967, Calcium activation of frog slow muscle fibers, J. Physiol. 188:261.PubMedGoogle Scholar
  71. Dallner, G., and Ernster, L., 1968, Subfractionation and composition of microsomal membranes: A review, J. of Histochem. Cytochem. 16:611.Google Scholar
  72. Deamer, D. W., and Baskin, R. J., 1969, Ultrastructure of sarcoplasmic reticulum preparations, J. Cell Biol. 42:296.PubMedGoogle Scholar
  73. Demel, R. A., and Joos, P., 1968, Interaction between lecithins and cholesterol at the air—water and oil—water interfaces, Chem. Phys. Lipids 2:35.PubMedGoogle Scholar
  74. Demel, R. A., Van Deenen, L. L. M., and Pethica, B. A., 1967, Monolayer interactions of phospholipids and cholesterol, Biochim. Biophys. Acta 135:11.Google Scholar
  75. Demel, R. A., Kinsky, S. C., Kinsky, C. B., and Van Deenen, L. L. M., 1968, Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with natural and synthetic lecithins, Biochim. Biophys. Acta 150:655.PubMedGoogle Scholar
  76. Donley, J., and Martonosi, A., 1969, Unpublished observations.Google Scholar
  77. Drabikowski, W., Dominas, H., and Dabrowska, M., 1966, Lipid patterns in microsomal fractions of rabbit skeletal muscle, Acta Biochim. Polonica 13:11.Google Scholar
  78. Duggan, P. F.,1964, ATPase activity in fractions separated from frog sartorius homogenates, Irish J. Med. Sci., 65:393.Google Scholar
  79. Duggan, P. F., 1965, Some properties of the monovalent-cation-stimulated ATPase of frog sartorius microsomes, Biochim. Biophys. Acta 99:144.PubMedGoogle Scholar
  80. Duggan, P. F., 1967, Potassium activated adenosine triphosphatase and Ca uptake by sarcoplasmic reticulum, Life Sci. 6:561.PubMedGoogle Scholar
  81. Duggan, P. F., 1968, The monovalent cation-stimulated calcium pump in frog skeletal muscle, Life Sci. 7:913.PubMedGoogle Scholar
  82. Duggan, P. F., and Martonosi, A., 1970, Sarcoplasmic reticulum IX. The permeability of sarcoplasmic reticulum membranes, J. Gen. Physiol. 56:147.PubMedGoogle Scholar
  83. Ebashi, F., 1961, Does EDTA bind to actomyosin? J. Biochem. (Tokyo) 50:77.Google Scholar
  84. Ebashi, F., and Yamanouchi, I., 1964, Calcium accumulation and adenosine triphosphatase of the relaxing factor, J. Biochem. (Tokyo) 55:504.Google Scholar
  85. Ebashi, S., 1957, Kielley-Meyerhof’s granules and the relaxation of glycerinated muscle fibers, In “Conference on the Chemistry of Muscular Contraction,” p. 89, Igaku-Shoin Ltd.,, Tokyo.Google Scholar
  86. Ebashi, S., 1958, A granule-bound relaxation factor in skeletal muscle, Arch. Biochem. Biophys. 76:410.PubMedGoogle Scholar
  87. Ebashi, S., 1960, Calcium binding and relaxation in the actomyosin system, J. Biochem. (Tokyo) 48:150.Google Scholar
  88. Ebashi, S., 1961a, Calcium binding activity of vesicular relaxing factor, J. Biochem. (Tokyo) 50:236.Google Scholar
  89. Ebashi, S., 1961b, The role of `relaxing factor’ in contraction-relaxation cycle of muscle, Progr. Theoret. Phys. Suppl. (Kyoto) 17:35.Google Scholar
  90. Ebashi, S., 1963, Third component participating in the superprecipitation of `natural actomyosin,’ Nature 200:1010.PubMedGoogle Scholar
  91. Ebashi, S., 1965, The sarcoplasmic reticulum and excitation contraction coupling, In “Molecular Biology of Muscle Contraction” (S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonomura, eds.), Vol. 9, p. 197, Elsevier, Amsterdam.Google Scholar
  92. Ebashi, S., 1966, Structural proteins and their interactions, in Symposium on Muscle, Budapest.Google Scholar
  93. Ebashi, S., and Ebashi, F., 1964, A new protein component participating in the superprecipitation of myosin B, J. Biochem. (Tokyo) 55:604.Google Scholar
  94. Ebashi, S., and Endo, M., 1964, Further studies on the calcium binding activity of the relaxing factor, In “Biochemistry of Muscle Contraction” (J. Gergely, ed.), p. 199, Little, Brown and Company, Boston.Google Scholar
  95. Ebashi, S., and Kodama, A., 1965, A new protein factor promoting aggregation of tropomyosin, J. Biochem. (Tokyo) 58:107.Google Scholar
  96. Ebashi, S., and Kodama, A., 1966a, Interaction of troponin with F-actin in the presence of tropomyosin, J. Biochem. (Tokyo) 59:425.Google Scholar
  97. Ebashi, S., and Kodama, A., 1966b, Native tropomyosin-like action of troponin on trypsintreated myosin B, J. Biochem. (Tokyo) 60:733.Google Scholar
  98. Ebashi, S., and Lipmann, F., 1962, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle, J. Cell Biol. 14:389.PubMedGoogle Scholar
  99. Ebashi, S., Ebashi, F., and Fujie, Y., 1960, The effect of EDTA and its analogues on glycerinated muscle fibers and myosin adenosine triphosphatase, J. Biochem. (Tokyo) 47:54.Google Scholar
  100. Ebashi, S., Otsuka, M., and Endo, M., 1962, Calcium binding of the relaxing factor and the link between excitation and contraction, Excerpta Medica Intern. Congr. Series. 48:899.Google Scholar
  101. Ebashi, S., Iwakura, H., Nakajima, H., Hakamura, R., and Ooi, Y., 1966, New structural proteins from dog heart and chicken gizzard, Biochem. Z. 345:201.Google Scholar
  102. Ebashi, S., Ebashi, F., and Kodama, A., 1967, Troponin as the Cat`-receptive protein in the contractile system, J. Biochem. (Tokyo) 62:137.Google Scholar
  103. Ebashi, S., Kodama, A., and Ebashi, F., 1968, Troponin. I. Preparation and physiological function, J. Biochem. (Tokyo) 64:465.Google Scholar
  104. Edelman, G. M., and McClure, W. O., 1968, Fluorescent probes and the conformation of proteins, Accounts Chem. Res. 1:65.Google Scholar
  105. Elison, C., Fairhurst, A. S., Howell, J. N., and Jenden, D. J., 1965, Calcium uptake in glycerol extracted rabbit psoas muscle fibers. I. Biochemical properties and conditions for uptake, J. Cell. Comp. Physiol. 65:133.Google Scholar
  106. Endo, M., 1964, Entry of dye into the sarcotubular system of muscle, Nature 202:1115.PubMedGoogle Scholar
  107. Endo, M., 1965, The effect of ultraviolet light on single muscle fibres of the frog, Abstract, XXIII Intern, Congr. Physiol. Sci. Comm. 163:810.Google Scholar
  108. Endo, M., 1966, Entry of fluorescent dyes into a sarcotubular system of the frog muscle, J. Physiol. 185:224.PubMedGoogle Scholar
  109. Endo, M., Nonomura, Y., Masaki, T., Ohtsuki, I., and Ebashi, S., 1966, Localization of native tropomyosin in relation to striation patterns, J. Biochem. 60:605.Google Scholar
  110. Engel, A. G., and Tice, L. W., 1966, Cytochemistry of phosphatases of the sarcoplasmic reticulum, J. Cell Biol. 31:473.PubMedGoogle Scholar
  111. Engelhardt, W. A., and Ljubimova, M. N., 1939, Myosin and adenosine-triphosphatase, Nature 144:668.Google Scholar
  112. Engstrom, A., and Finean, J. B., 1958, “Biological Ultrastructure,” Academic Press, New York.Google Scholar
  113. Essner, E., Novikoff, A. B., and Quintana, N., 1965, Nucleoside phosphatase activities in rat cardiac muscle, J. Cell Biol. 25:201.PubMedGoogle Scholar
  114. Fairhurst, A. J., Elison, C., and Jenden, D. J., 1964, Inhibition of Ca transport in muscle granules by oligomycin, Life Sci. 3:953.PubMedGoogle Scholar
  115. Fanburg, B., 1964, Calcium in the regulation of heart muscle contraction and relaxation, Fed. Proc. 23:922.PubMedGoogle Scholar
  116. Fanburg, B., and Gergely, J., 1965, Studies on adenosine triphosphate-supported calcium accumulation by cardiac subcellular particles, J. Biol. Chem. 240:2721.PubMedGoogle Scholar
  117. Fanburg, B., Finkel, R. M., and Martonosi, A., 1964, The role of calcium in the mechanism of relaxation of cardiac muscle, J. Biol. Chem. 239:2298.PubMedGoogle Scholar
  118. Fanburg, B. L., Drachman, D. B., Moll, D., and Roth, S. I., 1968, Calcium transport in isolated sarcoplasmic reticulum during muscle maturation, Nature 218:962.PubMedGoogle Scholar
  119. Fawcett, D. W., and Revel, J. P., 1961, The sarcoplasmic reticulum of a fast acting fish muscle, J. Biophys. Biochem. Cytol. 10:89.PubMedGoogle Scholar
  120. Feinstein, M. B., 1963, Inhibition of caffeine rigor and radiocalcium movements by local anaesthetics in frog sartorius muscle, J. Gen. Physiol. 47:151.PubMedGoogle Scholar
  121. Feinstein, M. B., 1964, Reaction of local anesthetics with phospholipids, J. Gen. Physiol. 48:357.PubMedGoogle Scholar
  122. Fernandez-Moran, H., Oda, T., Blair, P. V., and Green, D. E., 1964, A macromolecular repeating unit of mitochondrial structure and function, J. Cell Biol. 22:63.PubMedGoogle Scholar
  123. Fiehn, W., and Hasselbach, W., 1969, The effect of diethylether upon the function of the vesicles of sarcoplasmic reticulum, Europ. J. Biochem. 9:574.PubMedGoogle Scholar
  124. Filo, R. S., Bohr, D. F., and Ruegg, J. C., 1965, Glycerinated skeletal and smooth muscle: Calcium and magnesium dependence, Science 147:1581.PubMedGoogle Scholar
  125. Finean, J. B., 1953, Phospholipid-cholesterol complex in the structure of myelin, Experientia 9:17.PubMedGoogle Scholar
  126. Finean, J. B., 1966, The molecular organization of cell membranes, Prog. Biophys. Mol. Biol. 16:143.PubMedGoogle Scholar
  127. Finean, J. B., and Martonosi, A., 1965, The action of phospholipase C on muscle microsomes: A correlation of electron microscope and biochemical data, Biochim. Biophys. Acta 98:547.PubMedGoogle Scholar
  128. Fleischer, S., Fleischer, B., and Stoeckenius, W., 1967, Fine structure of lipid depleted mitochondria, J. Cell Biol. 32:193.PubMedGoogle Scholar
  129. Frank, G. B., 1960, Effect of changes in extracellular Ca concentration on the potassium induced contracture of frog skeletal muscle, J. Physiol. (London) 151:518.Google Scholar
  130. Frank, G. B., 1962, Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle, J. Physiol. (London) 163:254.Google Scholar
  131. Frank, G. B., 1964, Evidence for an essential role for calcium in excitation-contraction coupling in skeletal muscle, Proc. Roy. Soc. London Ser. B 160:504.Google Scholar
  132. Franzini-Armstrong, C., and Porter, K. R., 1964a, Sarcolemmal invaginations and the Tsystem in fish skeletal muscle, Nature 202:355.Google Scholar
  133. Franzini-Armstrong, C., and Porter, K. R., 1964b, Sarcolemmal invaginations constituting the T-system in fish muscle fibers, J. Cell Biol. 22:675.Google Scholar
  134. Fratantoni, J. C., and Askari, A., 1965, Effect of monovalent cations on the adenosinetriphosphatase of a skeletal muscle microsomal preparation, Biochim. Biophys. Acta 99:259.PubMedGoogle Scholar
  135. Fuchs, F., and Briggs, F. N., 1968, The site of calcium binding in relation to the activation of myofibrillar contraction, J. Gen. Physiol. 51:655.PubMedGoogle Scholar
  136. Fuchs, F., Gertz, E. W., and Briggs, F. N., 1968, The effect of quinidine on calcium accumulation by isolated sarcoplasmic reticulum of skeletal and cardiac muscle, J. Gen. Physiol. 52:955.PubMedGoogle Scholar
  137. Fuchs, F., Reddy, Y. S., and Briggs, F. N., 1969, Effect of pH and ionic strength on calcium binding to troponin, Biophys. J. 9:14.Google Scholar
  138. Fujino, M., Matsushima, T., Muroya, T., Yabu, H., Yamaguchi, S., and Takahashi, M., 1960, Effect of electrical stimulation on a muscle fiber model in the presence of adenosinetriphosphate, Nature 186:318.PubMedGoogle Scholar
  139. Gage, P. W., and Eisenberg, R. S., 1967, Action potentials without contraction in frog skeletal muscle fibers with disrupted transverse tubules, Science 158:1702.PubMedGoogle Scholar
  140. Gainer, H., 1967, Plasma membrane structure: Effect of hydrolases on muscle resting potentials, Biochim. Biophys. Acta 135:560.PubMedGoogle Scholar
  141. Gauthier, G. F., and Padykula, H. A., 1965, Cytochemical studies of adenosine triphosphatase activity in the sarcoplasmic reticulum, J. Cell Biol. 27:252.PubMedGoogle Scholar
  142. Gergely, J., 1966, Contractile proteins, Ann. Rev. Biochem. 35:691.PubMedGoogle Scholar
  143. Gergely, J., Kaldor, G., and Briggs, F. N., 1959, Participation of a dialyzable cofactor in the relaxing factor system of muscle, Biochim. Biophys. Acta 34:218.PubMedGoogle Scholar
  144. Gergely, J., Pragay, D., Scholz, A. F., Seidel, J. C., Sreter, F. A., and Thompson, M. M., 1965, Comparative studies on white and red muscle, In “Molecular Biology of Muscular Contraction” (S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonomura, eds.), Vol. 9, p. 145, Elsevier, Amsterdam.Google Scholar
  145. Giacomelli, F., Bibbiani, C., Bergamini, E., and Pellegrino, C., 1967, Two ATPases in the sarcoplasmic reticulum of skeletal muscle fibers, Nature 213:679.PubMedGoogle Scholar
  146. Gibbons, J. R., 1968, Biochemistry of mobility, Ann. Rev. Biochem. 37:521.PubMedGoogle Scholar
  147. Glaze, R. P., and Wadkins, C. L., 1967, Properties of a nucleoside diphosphokinase from liver mitochondria and its relationship to the adenosine triphosphate-adenosine diphosphate exchange reaction, J. Biol. Chem. 242:2139.PubMedGoogle Scholar
  148. Greaser, M. L., Cassens, R. G., Hoekstra, W. G., and Briskey, E. J., 1969, Effects of diethyl-ether and thymol on the ultrastructural and biochemical properties of purified sarcoplasmic reticulum fragments from skeletal muscle, Biochem. Biophys. Acta 193:73.PubMedGoogle Scholar
  149. Green, D. E., and Fleischer, S., 1962, On the molecular organization of biological transducing systems, In “Horizons in Biochemistry” (M. Pullman and E. Kasha, eds.), p. 381, Academic Press, New York.Google Scholar
  150. Green, D. E., and Fleischer, S., 1963, The role of lipids in mitochondrial electron transfer and oxidative phosphorylation, Biochim. Biophys. Acta 70:554.PubMedGoogle Scholar
  151. Green, D. E., and Tzagoloff, A., 1966, Role of lipids in the structure and function of biological membranes, J. Lipid Res. 7:587.PubMedGoogle Scholar
  152. Hall, C. E., 1955, Electron densitometry of stained virus particles, J. Biophys. Biochem. Cytol. 1:1.PubMedGoogle Scholar
  153. Hanson, J., and Huxley, H. E., 1953, Structural basis of the cross-striations in muscle, Nature 172:530.PubMedGoogle Scholar
  154. Hanson, J., and Huxley, H. E., 1955, The structural basis of contraction in striated muscle, Symp. Soc. Exp. Biol. 9:228.Google Scholar
  155. Hanson, J., and Lowy, J., 1963, The structure of F-actin and of actin filaments isolated from muscle, J. Mol. Biol. 6:46.Google Scholar
  156. Hanson, J., and Lowy, J., 1964a, The structure of actin filaments and the origin of the axial periodicity in the I substance of vertebrate striated muscle, Proc. Roy. Soc. London Ser. B 160:449.Google Scholar
  157. Hanson, J., and Lowy, J., 1964b, Comparative studies on the structure of contractile systems, Circulation Res. 15: (Suppl. 2)4.Google Scholar
  158. Hanson, J., and Lowy, J., 1964c, The structure of molluscan tonic muscles, In “Biochemistry of Muscle Contraction” (J. Gergely, ed.), p. 400, Little, Brown and Company, Boston.Google Scholar
  159. Harigaya, S., Ogawa, Y., and Sugita, H., 1968, Calcium binding activity of microsome fraction of rabbit red muscle, J. Biochem. 63:324.PubMedGoogle Scholar
  160. Hasselbach, W., 1964a, Relaxing factor and the relaxation of muscle, Progr. Biophys. Biophys. Chem. 14:167.Google Scholar
  161. Hasselbach, W., 1964b, Relaxation and the sarcotubular calcium pump, Fed. Proc. 23:909.Google Scholar
  162. Hasselbach, W., 1964c, ATP-driven active transport of calcium in the membranes of the sarcoplasmic reticulum, Proc. Roy. Soc. London Ser. B 160:501.Google Scholar
  163. Hasselbach, W., 1966, Structural and enzymatic properties of the calcium transporting membranes of the sarcoplasmic reticulum, Ann. N. Y. Acad. Sci. 137:1041.PubMedGoogle Scholar
  164. Hasselbach, W., and Elfvin, L. G., 1967, Structural and chemical asymmetry of the calciumtransporting membranes of the sarcotubular system as revealed by electron microscopy, J. Ultrastructure Res. 17:598.Google Scholar
  165. Hasselbach, W., and Makinose, M., 1961, Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhangigkeit von der ATP-Spaltung, Biochem. Z. 333:518.PubMedGoogle Scholar
  166. Hasselbach, W., and Makinose, M., 1962, ATP and active transport, Biochem. Biophys. Res. Commun. 7:132.PubMedGoogle Scholar
  167. Hasselbach, W., and Makinose, M., 1963, Über der Mechanismus des Calciumtransportes durch die Membranen des sarkoplasmatischen Reticulums, Biochem. Z. 339:94.PubMedGoogle Scholar
  168. Hasselbach, W., and Makinose, M., 1964, The calcium pump of the relaxing vesicles and the production of a relaxing substance, In “Biochemistry of Muscle Contraction” (J. Gergely, ed.), p. 247, Little, Brown and Company, Boston.Google Scholar
  169. Hasselbach, W., and Seraydarian, K., 1966, The role of sulfhydryl groups in calcium transport through the sarcoplasmic reticulum membranes of skeletal muscle, Biochem. Z. 345:159.Google Scholar
  170. Hasselbach, W., and Weber, H. H., 1953, Der Einfluss des MB-Faktors auf die Kontraktion des Fasermodells, Biochim. Biophys. Acta 11:160.PubMedGoogle Scholar
  171. Hasselbach, W., Seraydarian, K., Makinose, M., Uchida, K., and Mommaerts, W. F. H. M., 1965, Attempts to detach the calcium transport mechanism from the structure of sarcotubular vesicles, Fed. Proc. 24:599.Google Scholar
  172. Hastings, J. W., Mitchell, G., Mattingly, P. H., Blinks, J. R., and Van Leeuwen, M., 1969, Response of aequorin bioluminescence to rapid changes in calcium concentration, Nature 222:1047.PubMedGoogle Scholar
  173. Hauser, H., and Dawson, R. M. C., 1967, The binding of Ca2+ at lipid-water interfaces, Europ. J. Biochem. 1:61.PubMedGoogle Scholar
  174. Hauser, H., and Dawson, R. M. C., 1968, The displacement of Ca ions from phospholipids monolayers by pharmacologically active and other organic bases, Biochem. J. 109:909.PubMedGoogle Scholar
  175. Heilbrunn, L. V., and Wiercinsky, F. J., 1947, Action of various cations on muscle protoplasm, J. Cell. Comp. Physiol. 29:15.Google Scholar
  176. Hellam, D. C., and Podolsky, R. J., 1966, The relation between calcium concentration and isometric force in skinned frog muscle fibers, Fed. Proc. 25:466.Google Scholar
  177. Hendrickson, H. S., and Fullington, J. G., 1965, Stabilities of metal complexes of phospholipide: Ca2+, Mg2+ and Na+ complexes of phosphatidylserine and triphosphoinositide, Biochemistry 4:1599.PubMedGoogle Scholar
  178. Herz, R., and Weber, A., 1965, Caffeine inhibition of Ca uptake by muscle reticulum, Fed. Proc. 24:208.Google Scholar
  179. Hess, M. L., Briggs, F. N., Shinebourne, E., and Hamer, J., 1968, Effect of adrenergic blocking agents on the Ca pump of fragmented cardiac sarcoplasmic reticulum, Nature 220:79.PubMedGoogle Scholar
  180. Hill, A. V., 1948, On the time required for diffusion and its relation to processes in muscle, Proc. Roy. Soc. London Ser. B 135:446.Google Scholar
  181. Hill, A. V., 1949, The abrupt transition from rest to activity in muscle, Proc. Roy. Soc. London Ser. B 136:399.Google Scholar
  182. Hill, A. V., 1951, The transition from rest to full activity in muscle: The velocity of shortening, Proc. Roy. Soc. London Ser. B 138:329.Google Scholar
  183. Hill, D. K., 1964a, The location of adenine nucleotide in the striated muscle of the toad, J. Cell Biol. 20:435.Google Scholar
  184. Hill, D. K., 1964b, The location of adenine nucleotide in resting amphibian striated muscle, Proc. Roy. Soc. London Ser. B 160:485.Google Scholar
  185. Hill, D. K., 1964c, The space accessible to albumin within the striated muscle fibre of the toad, J. Physiol. 175:275.Google Scholar
  186. Hodgkin, A. L., 1964, The conduction of nerve impulse, Charles C Thomas, Publisher, Springfield, III.Google Scholar
  187. Hodgkin, A. L., and Huxley, A. F., 1952a, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. 116:497.Google Scholar
  188. Hodgkin, A. L., and Huxley, A. F., 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117:500.Google Scholar
  189. Holland, D. L., and Perry, S. V., 1969, The adenosine triphosphatase and calcium iontransporting activities of the sarcoplasmic reticulum of developing muscle, Biochem. J. 114:161.PubMedGoogle Scholar
  190. Huxley, A. F., 1956, Local activation of striated muscle from the frog and the crab, J. Physiol. 135:17P.Google Scholar
  191. Huxley, A. F., 1957, Muscle structure and theories of contraction, Progr. Biophys. Biophys. Chem. 7:257.Google Scholar
  192. Huxley, A. F., 1959, Local activation of muscle, Ann. N. Y. Acad. Sci. 81:446.PubMedGoogle Scholar
  193. Huxley, A. F., 1964, Muscle, Ann. Rev. Physiol. 26:131.Google Scholar
  194. Huxley, A. F., and Niedergerke, R., 1954, Structural changes in muscle during contraction, Nature 173:971.PubMedGoogle Scholar
  195. Huxley, A. F., and Peachey, L. D., 1964, Local activation of crab muscle, J. Cell Biol. 23: 107A.Google Scholar
  196. Huxley, A. F., and Straub, R. W., 1958, Local activation and interfibrillar structures in striated muscle, J. Physiol. 143:40P.Google Scholar
  197. Huxley, A. F., and Taylor, R. E., 1955, Function of Krause’s membrane, Nature 176:1068.PubMedGoogle Scholar
  198. Huxley, A. F., and Taylor, R. E., 1958, Local activation of striated muscle fibers, J. Physiol. 144:426.PubMedGoogle Scholar
  199. Huxley, H. E., 1957a, Proceedings of the Stockholm Conference on Electron Microscopy, 1956, p. 260, Almquist and Wiksell, Stockholm.Google Scholar
  200. Huxley, H. E., 1957b, The double array of filaments in cross striated muscle, J. Biophys. Biochem. Cytol. 3:631.Google Scholar
  201. Huxley, H. E., 1960, Muscle cell, In “The Cell” (J. Brachet and A. E. Mirsky, eds.), Vol. 4, p. 365, Academic Press, London.Google Scholar
  202. Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7:281.Google Scholar
  203. Huxley, H. E., 1964, Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle, Nature 202:1067.PubMedGoogle Scholar
  204. Huxley, H. E., 1968, Structural difference between resting and rigor muscle; evidence from intensity changes in the low-angle equatorial X-ray diagram, J. Mol. Biol. 37:507.PubMedGoogle Scholar
  205. Huxley, H. E., and Hanson, J., 1954, Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation, Nature 173:973.PubMedGoogle Scholar
  206. Huxley, H. E., and Zubay, G., 1960, Electron microscope observations on the structure of microsomal particles from Escherichia coli,J. Mol. Biol. 2:10.Google Scholar
  207. Ikemoto, N., Sreter, F. A., Nakamura, A., and Gergely, J., 1968, Tryptic digestion and localization of calcium uptake and ATPase activity in fragments of sarcoplasmic reticulum, J. Ultrastructure Res. 23:216.Google Scholar
  208. Inesi, G., and Almendares, J., 1968, Interaction of fragmented sarcoplasmic reticulum with C14-ADP, C14-ATP, and 32P-ATP. Effect of Ca2+ and Mg2+, Arch. Biochim. Biophys. 126:733.Google Scholar
  209. Inesi, G., and Asai, H., 1968, Trypsin digestion of fragmented sarcoplasmic reticulum, Arch. Biochem. Biophys. 126:469.PubMedGoogle Scholar
  210. Inesi, G., and Landgraf, W. C., 1969, Spin labeling studies of conformational changes in sarcoplasmic reticulum, Abst. Biophys. Soc., Biophys. J. 9:143.Google Scholar
  211. Inesi, G., and Watanabe, S., 1967, Temperature dependence of ATP hydrolysis and Ca uptake by fragmented sarcoplasmic membranes, Arch. Biochem. Biophys. 121:665.PubMedGoogle Scholar
  212. Inesi, G., Ebashi, S., and Watanabe, S., 1964, Preparation of vesicular relaxing factor from bovine heart tissue, Am. J. Physiol. 207:1339.PubMedGoogle Scholar
  213. Inesi, G., Goodman, J., and Watanabe, S., 1967, Effect of diethylether on the adenosine triphosphatase activity and the calcium uptake of fragmented sarcoplasmic reticulum of rabbit skeletal muscle, J. Biol. Chem. 242:4637.PubMedGoogle Scholar
  214. Isaacson, A., and Sandow, A., 1967, Quinine and caffeine effects on Ca2+ movements in frog sartorius muscle, J. Gen. Physiol. 50:2109.PubMedGoogle Scholar
  215. Jenden, D. J., and Fairhurst, A. S., 1969, The pharmacology of ryanodine, Pharmacol. Rev. 21:1.PubMedGoogle Scholar
  216. Jobsis, F. F., and O’Connor, M. J., 1966, Calcium release and reabsorption in the sartorius muscle of the toad, Biochem. Biophys. Res. Commun. 25:246.PubMedGoogle Scholar
  217. Johnson, Y. H., and Pressman, B. C., 1968, Continuous recording of pH and pCa during Ca2+ binding by muscle microsomes, Biochim. Biophys. Acta 153:500.PubMedGoogle Scholar
  218. Joos, R. W., and Carr, C. W., 1967, The binding of Ca2+ in mixtures of phospholipids, Proc. Soc. Exp. Biol. Med. 124:1268.PubMedGoogle Scholar
  219. Kaback, H. R., 1968, The role of the phosphoenol pyruvate phosphotransferase system in the transport of sugars by isolated membrane preparations of E. coli, J. Biol. Chem. 243:3711.PubMedGoogle Scholar
  220. Kaldor, G., Gergely, J., and Briggs, F. N., 1959, Participation of a dialyzable cofactor in the relaxing factor system of muscle. III. Substitution of pyrophosphate for the cofactor, Biochim. Biophys. Acta 34:224.PubMedGoogle Scholar
  221. Kamada, T., and Kinosita, H., 1943, Disturbances initiated from the naked surface of muscle protoplasm, Jap. J. Zool. 10:469.Google Scholar
  222. Katz, A. M., 1967a, Quantitative aspects of dog cardiac microsomal calcium binding and calcium uptake, Circulation Res. 21:153.Google Scholar
  223. Katz, A. M., 1967b, Regulation of cardiac muscle contractility, J. Gen. Physiol. 50:185.Google Scholar
  224. Katz, A. M., and Repke, D. I., 1966, Control of myocardial contraction: The sensitivity of cardiac actomyosin to calcium ions, Science 152:1242.PubMedGoogle Scholar
  225. Katz, A. M., and Repke, D. I., 1967, Quantitative aspects of dog cardiac microsomal calcium binding and calcium uptake, Circulation Res. 21:153.PubMedGoogle Scholar
  226. Kielley, W. W., and Meyerhof, O., 1948a, A new Mg-activated ATPase from muscle, J. Biol. Chem. 174:387.Google Scholar
  227. Kielley, W. W., and Meyerhof, O., 1948b, Studies on adenosinetriphosphatase of muscle. II. A new magnesium activated adenosinetriphosphatase, J. Biol. Chem. 176:591.Google Scholar
  228. Kielley, W. W., and Meyerhof, O., 1950, Studies on adenosinetriphosphatase of muscle. III. The lipoprotein nature of the magnesium-activated adenosinetriphosphatase, J. Biol. Chem. 183:391.Google Scholar
  229. Klotz, I. M., and Carver, B. R., 1961, A spectrophotometric titration for the determination of SH groups, Arch. Biochem. Biophys. 95:540.PubMedGoogle Scholar
  230. Korn, E. D., 1966, Structure of biological membranes, Science 153:1491.PubMedGoogle Scholar
  231. Korn, E. D., 1968, Structure and function of the plasma membrane. A biochemical perspective, J. Gen. Physiol. 52:257.PubMedGoogle Scholar
  232. Korn, E. D., 1969, Current concepts of membrane structure and function, Fed. Proc. 28:6.PubMedGoogle Scholar
  233. Kumagai, H., Ebashi, S., and Takeda, F., 1955, Essential relaxing factor in muscle other than myokinase and creatine phosphokinase, Nature 176:166.PubMedGoogle Scholar
  234. Lain, R. F., Hess, M. L., Gertz, E. W., and Briggs, F. N., 1968, Calcium uptake activity of canine myocardial sarcoplasmic reticulum in the presence of anesthetic agents, Circulation Res. 23:597.PubMedGoogle Scholar
  235. Lammers, W., and Ritchie, J. M., 1955, The action of quinine and quinidine on the contractions of striated muscle, J. Physiol. 129:412.PubMedGoogle Scholar
  236. Landgraf, W. C., and Inesi, G., 1969, ATP dependent conformational change in “spin-labeled” sarcoplasmic reticulum, Arch. Biochem. Biophys. 130:111.PubMedGoogle Scholar
  237. Latimer, P., Moore, D. M., and Bryant, F. D.,1968, Changes in total light scattering and absorption caused by changes in particle conformation, J. Theoret. Biol. 21:348.Google Scholar
  238. Lee, K. S., 1965a, Present status of cardiac relaxing factor, Fed. Proc. 24:432.Google Scholar
  239. Lee, K. S., 1965b, Effect of electrical stimulation on uptake and release of calcium by the endoplasmic reticulum, Nature 207:85.Google Scholar
  240. Lee, K. S., 1967, The role of cardiac sarcoplasmic reticulum in excitation contraction coupling, In “Factors Influencing Myocardial Contractility” (R. D. Tanz, F. Kavaler, J. Roberts, eds.), p. 363, Academic Press, New York.Google Scholar
  241. Lee, K. S., and Choi, S. J., 1966, Effects of the cardiac glycosides on the Ca2+ uptake cardiac sarcoplasmic reticulum, J. Pharm. Exp. Therap. 153:114.Google Scholar
  242. Lee, K. S., Tanaka, K., and Yu, D. H., 1965a, Studies on the ATPase, Ca2+ uptake and relaxing activity of the microsomal granules from skeletal muscle, J. Physiol. (London) 179:456.Google Scholar
  243. Lee, K. S., Yu, D. H., and Struthers, J. L., 1965b, A study of the effect of cardiac glycosides on the syneresis of myofibrils in the presence of relaxing factor, J. Pharm. Exp. Therap. 148:277.Google Scholar
  244. Lee, K. S., Ladinsky, H., Choi, S. I., and Kasuya, Y., 1966, Studies on the in vitro interaction of electrical stimulation and Ca“ movement in sarcoplasmic reticulum, J. Gen. Physiol. 49:689.PubMedGoogle Scholar
  245. Lenard, J., and Singer, S. J., 1966, Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism, Proc. Nat. Acad. Sci. 56: 1828.PubMedGoogle Scholar
  246. Lenard, J., and Singer, S. J., 1968, Structure of membranes: Reaction of red blood cell membranes with phospholipase C, Science 159:738.PubMedGoogle Scholar
  247. Lorand, L., and Molnar, J., 1962, Biochemical control of relaxation in muscle systems, In “Muscle as a Tissue” (K. Rodahl and S. M. Horvath, eds.), p. 97, McGraw-Hill, New York.Google Scholar
  248. Lorand, L., Molnar, J., and Moos, C., 1957, Biochemical studies of relaxation in glycerinated muscle, In “Conference on the Chemistry of Muscular Contraction,” p. 85, IgakuShoin Ltd., Tokyo.Google Scholar
  249. Lorand, L., Schuel, H., Demovsky, R. A., and Meister, J., 1965, Distribution and some properties of muscle relaxing particles, In “Molecular Biology of Muscle Contraction” (S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonomura, eds.), Vol. 9, p. 160, Elsevier Publishing Co., Amsterdam.Google Scholar
  250. Lbw, H., 1959, The effects of promazines on mitochondrial adenosine triphosphatase reactions, Biochim. Biophys. Acta 32:11.Google Scholar
  251. Luzzati, V., Krzywicki, G. T., Rivas, E., Reiss-Husson, F., and Rand, R. P., 1968, X-ray study of model systems; structure of the lipid-water phases in correlation with the chemical composition of the lipids, J. Gen. Physiol. 51:37.PubMedGoogle Scholar
  252. Makinose, M., 1966, Die Nucleosidtriphosphat-Nucleosiddiphosphat-Transphosphorylase-Aktivitat der Vesikel des sarkoplasmatischen Reticulums, Biochem. Z. 345:80.Google Scholar
  253. Makinose, M., 1969, The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport, Europ. J. Biochem. 10:74.PubMedGoogle Scholar
  254. Makinose, M., and Hasselbach, W., 1965, Der Einfluss von Oxalat auf den Calcium-Transport isolierter Vesikel des sarkoplasmatischen Reticulums, Biochem. Z. 343:360.PubMedGoogle Scholar
  255. Makinose, M., and The, R., 1965, Calcium-Akkumulation und Nucleosidtriphosphat-Spaltung durch die Vesikel des sarkoplasmatischen Reticulums, Biochem. Z. 343:383.PubMedGoogle Scholar
  256. Manery, J. F., 1966, Effects of Ca“ ions on membranes, Fed. Proc. 25:1804.PubMedGoogle Scholar
  257. Marinetti, G. V., Erbland, J., and Stotz, E., 1958, Phosphatides of pig heart cell fractions, J. Biol. Chem. 233:562.PubMedGoogle Scholar
  258. Marsh, B. B., 1951, A factor modifying muscle fibre syneresis, Nature 167:1065.PubMedGoogle Scholar
  259. Marsh, B. B., 1952, The effect of adenosinetriphosphate on the fibre volume of a muscle homogenate, Biochim. Biophys. Acta 9:247.PubMedGoogle Scholar
  260. Martonosi, A., 1963, The activating effect of phospholipids on the ATPase activity and Ca2+ transport of fragmented sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 13:273.Google Scholar
  261. Martonosi, A., 1964, Role of phospholipids in ATPase activity and Ca“ transport of fragmented sarcoplasmic reticulum, Fed. Proc. 23:913.PubMedGoogle Scholar
  262. Martonosi, A., 1967, The role of phospholipids in the ATPase activity of skeletal muscle microsomes, Biochem. Biophys. Res. Commun. 29:753.PubMedGoogle Scholar
  263. Martonosi, A., 1968a, Sarcoplasmic reticulum. IV. Solubilization of microsomal ATPase, J. Biol. Chem. 243:71.Google Scholar
  264. Martonosi, A., 1968b, Effect of phospholipase C on surviving muscle preparations, Biochim. Biophys. Acta 150:309.Google Scholar
  265. Martonosi, A., 1968c, Sarcoplasmic reticulum. V. The structure of sarcoplasmic reticulum membranes, Biochim. Biophys. Acta 150:694.Google Scholar
  266. Martonosi, A., 1968d, Steroid effects on the Ca“ ion transport of rabbit skeletal muscle microsomes, Arch. Biochem. Biophys. 125:295.Google Scholar
  267. Martonosi, A., 1968e, Sarcoplasmic reticulum. VI. Microsomal Ca2+ transport in genetic muscular dystrophy of mice, Proc. Soc. Exp. Biol. Med. 127:824.Google Scholar
  268. Martonosi, A., 1969a, Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport, J. Biol. Chem. 244:613.Google Scholar
  269. Martonosi, A., 1969b, The mechanism of Ca2+ transport in skeletal muscle microsomes, Biophys. J. 9:96.Google Scholar
  270. Martonosi, A., 1969c, Unpublished observations.Google Scholar
  271. Martonosi, A., 1969d, The protein composition of sarcoplasmic reticulum membranes, Biochem. Biophys. Res. Commun. 36:1039.Google Scholar
  272. Martonosi, A., 1970, The protein composition of sarcoplasmic reticulum membranes, Abs. Biophys. Soc., Biophys. J. 10:8a.Google Scholar
  273. Martonosi, A., and Feretos, R., 1963a, ATPase activity and Ca-storage of relaxing factor, Abs. Biophys. Soc. M.D., 10:68Google Scholar
  274. Martonosi, A., and Feretos, R., 1963b, Observations on the Ca2+ uptake by fragmented sarcoplasmic reticulum, Fed. Proc. 22:352.Google Scholar
  275. Martonosi, A., and Feretos, R., 1964a, Sarcoplasmic reticulum. I. The uptake of Ca2+ by sarcoplasmic reticulum fragments, J. Biol. Chem. 239:648.Google Scholar
  276. Martonosi, A., and Feretos, R., 1964b, Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca2+ uptake, J. Biol. Chem. 239:659.Google Scholar
  277. Martonosi, A., Molino, C. M., and Gergely, J., 1964, The binding of divalent cations to actin, J. Biol. Chem. 239:1057.Google Scholar
  278. Martonosi, A., Donley, J., and Halpin, R. A., 1968, Sarcoplasmic reticulum. III. The role of phospholipids in the ATPase activity and Ca?’ transport, J. Biol. Chem. 243:61.PubMedGoogle Scholar
  279. Mashima, H., and Washio, H., 1965, Comparison of the twitch potentiations produced by anions and cations in frog skeletal muscle, In “Molecular Biology of Muscular Contraction” (S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonomura, eds.), Vol. 9, p. 177, Elsevier, Amsterdam.Google Scholar
  280. Masoro, E. J., and Yu, B. P., 1969, Characterization of sarcotubular membrane protein, Biochem. Biophys. Res. Commun. 34:686.PubMedGoogle Scholar
  281. de Meis, L., 1969a, Activation of Ca2+ uptake by acetylphosphate in muscle microsomes, Biochim. Biophys. Acta 172:343.Google Scholar
  282. de Meis, L., 1968b, Ca uptake and acetylphosphatase of skeletal muscle microsomes, J. Biol. Chem. 244:3733.Google Scholar
  283. Molnar, J., and Lorand, L., 1962, A phosphoryl group acceptor attached to the microsomal fraction of muscle, Arch. Biochem. Biophys. 98:356.PubMedGoogle Scholar
  284. Mommaerts, W. F. H. M., 1967, Conformational studies on the membrane protein of sarcotubular vesicles, Proc. Nat. Acad. Sci. 58:2476.PubMedGoogle Scholar
  285. Mueller, H., 1960, The action of relaxing factor on actomyosin, Biochim. Biophys. Acta 39:93.PubMedGoogle Scholar
  286. Muscatello, U., Andersson-Cedergren, E., Azzone, G. F., and von der Decken, A., 1961, The sarcotubular system of frog skeletal muscle. A morphological and biochemical study, J. Biophys. Biochem. Cytol. 10(4):201.PubMedGoogle Scholar
  287. Muscatello, U., Andersson-Cedergren, E., and Azzone, G. F., 1962, The mechanism of muscle fiber relaxation, adenosine triphosphatase and relaxing activity of the sarcotubular system, Biochim. Biophys. Acta 63:55.PubMedGoogle Scholar
  288. Nachmansohn, D., 1968, Proteins in bioelectricity: The control of ion movements across excitable membranes, Proc. Nat. Acad. Sci. 61:1034.PubMedGoogle Scholar
  289. Nagai, T., Makinose, M., and Hasselbach, W., 1960, Der physiologische Erschlaffungsfaktor und die Muskelgrana, Biochim. Biophys. Acta 43:223.PubMedGoogle Scholar
  290. Nagai, T., Takahashi, H., and Takauji, M., 1965, On the accumulation of divalent cations by skeletal muscle microsomes, In “Molecular Biology of Muscle Contraction” (S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonomura, eds.), Vol. 9, p. 169, Elsevier Publishing Co., Amsterdam.Google Scholar
  291. Napolitano, L., Lebaron, F., and Scaletti, J., 1967, Preservation of myelin lamellar structure in the absence of lipid, J. Cell Biol. 34:817.PubMedGoogle Scholar
  292. Natori, R., 1954, The property and contraction process of isolated myofibrils, Jikeikai Med. J. 1:119.Google Scholar
  293. Natori, R., 1955, Repeated contraction and conductive contraction observed in isolated myofibrils, Jikeikai Med. J. 2:1.Google Scholar
  294. Natori, R., 1965, Effects of Na and Ca ions on the excitability of isolated myofibrils, In “Molecular Biology of Muscular Contraction” (S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonomura, eds.), Vol. 9, p. 190, Elsevier Publishing Co., Amsterdam.Google Scholar
  295. Nayler, W. G., 1966a, An effect of quinidine sulfate on the lipid-facilitated transport of calcium ions in cardiac muscle, Am. Heart J. 71:363.Google Scholar
  296. Nayler, W. G., 1966b, The effect of pronethalol and propranolol on lipid facilitated transport of calcium ions, J. Pharm. Exp. Therap. 153:479.Google Scholar
  297. Nayler, W. G., 1967, Calcium exchange in cardiac muscle: A basic mechanism of drug action, Am. Heart J. 73:379.PubMedGoogle Scholar
  298. Nayler, W. G., and Anderson, J. E., 1965, Effects of Zn on cardiac muscle contraction, Am. J. Physiol. 209:17.PubMedGoogle Scholar
  299. Nayler, W. G., and McCulloch, M., 1960, The action of anions on cardiac muscle, Austral. J. Exp. Biol. Med. Sci. 38:117.Google Scholar
  300. Nayler, W. G., and Price, J. M., 1967, Effects of skeletal muscle potentiators including uranyl ions on cardiac muscle, Am. J. Physiol. 213:1459.PubMedGoogle Scholar
  301. Nelson, D. A., and Benson, E. S., 1963, On the structural continuities of the transverse tubular system of rabbit and human myocardial cells, J. Cell Biol. 16:297.PubMedGoogle Scholar
  302. Nelson, P. G., 1958, Effects of certain enzymes on node of Ranvier excitability with observations on submicroscopic structure, J. Cell. Comp. Physiol. 52:127.Google Scholar
  303. Niedergerke, R., 1955, Local muscular shortening by intracellularly applied calcium, J. Physiol. (London) 128:12P.Google Scholar
  304. Ohnishi, T., and Ebashi, S., 1963, Spectrophotometrical measurement of instantaneous calcium binding of the relaxing factor of muscle, J. Biochem. (Tokyo) 54:506.Google Scholar
  305. Ohnishi, T., and Ebashi, S., 1964, The velocity of calcium binding of isolated sarcoplasmic reticulum, J. Biochem. (Tokyo) 55:599.Google Scholar
  306. Ohnishi, T., and Kawamura, H., 1964, Rolle der kontraktilen Proteine und Phosphatide in der Verbindung des Calcium durch Muskelvesikel, J. Biochem. (Tokyo) 56:106.Google Scholar
  307. Ohnishi, T., and Terasaki, T., 1967, A relation between Ca2+ binding and turbidity change in isolated sarcoplasmic reticulum, J. Biochem. 61:812.Google Scholar
  308. Ohnishi, T., Hagihara, B., and Okunuki, K., 1963, A double-beam spectrophotometer without vibrating mirror-chopper system, J. Biochem. (Tokyo) 54:287.Google Scholar
  309. Olson, E. J., and Cazort, R. T., 1969, Active calcium and strontium transport in human erythrocyte ghosts, J. Gen. Physiol. 53:311.PubMedGoogle Scholar
  310. Otsuka, M., Ebashi, F., and Shoichi, I., 1964, Cardiac myosin B and calcium ions, J. Biochem. (Tokyo) 55:192.Google Scholar
  311. Otsuka, M., Ohtsuki, I., and Ebashi, S., 1965, ATP-dependent Ca2+ binding of brain microsomes, J. Biochem. (Tokyo) 58:188.Google Scholar
  312. Page, S. G., 1965, A comparison of the fine structures of frog slow and twitch muscle fibres, J. Cell Biol. 26:477.PubMedGoogle Scholar
  313. Palmer, R. F., and Posey, V. A., 1967, Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum, J. Gen. Physiol. 50:2085.PubMedGoogle Scholar
  314. Parmley, W. W., and Braunwald, E., 1967, Comparative myocardial depressant and antiarhythmic properties of 1-propranolol, dl-propranolol and quinidine, J. Pharm. Exp. Therap. 158:11.Google Scholar
  315. Parsons, D. F., and Yano, Y., 1967, The cholesterol content of the outer and inner membranes of guinea-pig liver mitochondria, Biochim. Biophys. Acta 135:362.PubMedGoogle Scholar
  316. Parsons, D. F., Williams, G. R., and Chance, B., 1966, Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria, Ann. N. Y. Acad. Sci. 137:643.PubMedGoogle Scholar
  317. Patriarcha, P., and Carafoli, E., 1968, A study of the intracellular transport of calcium in rat heart, J. Cell Physiol. 72:29.Google Scholar
  318. Peachey, L. D., 1961, Structure of the longitudinal body muscles of amphioxus, J. Biophys. Biochem. Cytol. 10:159.PubMedGoogle Scholar
  319. Peachey, L. D., 1965, The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius, J. Cell Biol. 25 (3):209.PubMedGoogle Scholar
  320. Peachey, L. D., 1966, The role of transverse tubules in excitation-contraction coupling in striated muscle, Ann. N. Y. Acad. Sci. 137:1025.PubMedGoogle Scholar
  321. Peachey, L. D., and Huxley, A. F., 1962, Structural identification of twitch and slow striated muscle fibres of the frog, J. Cell Biol. 13:177.PubMedGoogle Scholar
  322. Pease, D. C., Jenden, D. J., and Howell, J. N., 1965, Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. II. Electron microscopic localization of uptake sites, J. Cell. Comp. Physiol. 65:141.Google Scholar
  323. Pellegrino, C., and Franzini, C., 1963, An electron microscope study of denervation atrophy in red and white skeletal muscle fibers, J. Cell Biol. 17:327.PubMedGoogle Scholar
  324. Perry, S. V., 1952, The adenosinetriphosphatase activity of lipoprotein granules isolated from skeletal muscle, Biochim. Biophys. Acta 8:499.PubMedGoogle Scholar
  325. Perry, S. V., 1967, The structure and interactions of myosin, Progr. Biophys. Mol. Biol. 17: 325.Google Scholar
  326. Perry, S. V., 1968, The role of myosin in muscular contraction, In “Aspects of Cell Motility,” Twenty-second Symposium of the Society for Experimental Biology, p. 1, Cambridge University, Academic Press.Google Scholar
  327. Perry, S. V., and Grey, T. C., 1956a, Ethylenediaminetetraacetate and the adenosinetriphosphatase activity of actomyosin systems, Biochem. J. 64:5.Google Scholar
  328. Perry, S. V., and Grey, T. C., 1956b, A study of the effects of substrate concentration and certain relaxing factors on the magnesium activated myofibrillar adenosine triphosphatase, Biochem. J. 64:184.Google Scholar
  329. Peterson, N. S., and Feigen, G. A., 1962, Effect of NO3- on atrial action potentials and contraction as modified by Na+ and Ca2+, Am. J. Physiol. 202:950.PubMedGoogle Scholar
  330. Podleski, T., and Changeux, J. P., 1969, Effects associated with permeability changes caused by gramicidin A in electroplax membrane, Nature 221:541.PubMedGoogle Scholar
  331. Podolsky, R. J., 1962, The structural changes in isolated myofibrils during calcium-activated contraction, J. Gen. Physiol. 45:613A.Google Scholar
  332. Podolsky, R. J., and Costantin, L. L., 1964, Regulation by calcium of the contraction and relaxation of muscle fibers, Fed. Proc. 23:933.PubMedGoogle Scholar
  333. Podolsky, R. J., and Costantin, L. L., 1966, The internal membrane system and muscle activation, Ann. N. Y. Acad. Sci. 137:1038.PubMedGoogle Scholar
  334. odolsky, R. J., and Hubert, C. E., 1961, Activation of the contractile mechanism in isolated myofibrils, Fed. Proc. 20:301.Google Scholar
  335. Porter, K. R., 1956, The sarcoplasmic reticulum in muscle cells of Amblystoma larvae, J. Biophys. Biochem. Cytol. 2(4):Suppl 163.PubMedGoogle Scholar
  336. Porter, K. R., 1961, The sarcoplasmic reticulum. Its recent history and present status, J. Biophys. Biochem. Cytol. 10:219.PubMedGoogle Scholar
  337. Porter, K. R., and Palade, G. E., 1957, Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells, J. Biophys. Biochem. Cytol. 3:269.PubMedGoogle Scholar
  338. Portzehl, H., 1957a, Die Bindung des Erschlaffungsfaktors von Marsh an die Muskelgrana, Biochim. Biophys. Acta 26:373.Google Scholar
  339. Portzehl, H., 1957b, Bewirkt das System Phosphokreatin-Phosphokinase die Erschlaffung des lebenden Muskels, Biochim. Biophys. Acta 24:474.Google Scholar
  340. Portzehl, H., Caldwell, P. C., and Ruegg, J. C., 1964, The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions, Biochim. Biophys. Acta 79:581.PubMedGoogle Scholar
  341. Prezbindowski, K. S., Sun, F. F., and Crane, F. L., 1968, Characteristics of microsomal membranes by negative staining technique, Exp. Cell Res. 50:241.Google Scholar
  342. Pringle, J. W. S., 1967, The contractile mechanism of insect fibrillar muscle, Progr. Biophys. Mol. Biol. 17:1.Google Scholar
  343. Pucell, A., and Martonosi, A., 1969a, Unpublished observations.Google Scholar
  344. Pucell, A., and Martonosi, A., 1969b, Formation of a protein-bound phosphate intermediate from acetylphosphate in fragmented sarcoplasmic reticulum, Abst. Third Internat. Congr. Biophys., Cambridge, Mass.Google Scholar
  345. Pullman, M. E., and Schatz, G., 1967, Mitochondrial oxidations and energy coupling, Ann. Rev. Biochem. 36:539.PubMedGoogle Scholar
  346. Raaflaub, J., 1956, Applications of metal buffers and metal indicators in biochemistry, Methods Biochem. Anal. 3:301.PubMedGoogle Scholar
  347. Rand, R. P., and Luzzati, V., 1968, X-ray diffraction study in water of lipids extracted from human erythrocytes. The position of cholesterol in the lipid lamellae, Biophys. J. 8:125.PubMedGoogle Scholar
  348. Rayns, D. G., Simpson, F. O., and Bertaud, W. S., 1967, Transverse tubule apertures in mammalian myocardial cells: Surface array, Science 156:656.PubMedGoogle Scholar
  349. Reger, J. F., 1961, The fine structure of neuromuscular junctions and the sarcoplasmic reticulum of extrinsic eye muscles of Fundulus heteroclitus, J. Biophys. Biochem. Cytol. 10:111.Google Scholar
  350. Reiter, M., 1965, The effect of various anions on the contractility of the guinea pig papillary muscle, Experientia 21:87.PubMedGoogle Scholar
  351. Rendi, R., 1966, Sodium-potassium requiring adenosinetriphosphatase activity. III. Purification and properties of the adenosinediphosphate-adenosinetriphosphate exchange enzyme, Biochim. Biophys. Acta 118:621.PubMedGoogle Scholar
  352. Repke, D. I., and Katz, A. M., 1969, Stabilization of cardiac microsomal Cat’ uptake by hypertonic sucrose solutions, Biochim. Biophys. Acta 172:348.PubMedGoogle Scholar
  353. Revel, J. P., 1962, The sarcoplasmic reticulum of the bat cricothyroid muscle, J. Cell Biol. 12:571.PubMedGoogle Scholar
  354. Ridgway, E. B., and Ashley, C. C., 1967, Calcium transients in single muscle fibers, Biochem. Biophys. Res. Commun. 29:229.PubMedGoogle Scholar
  355. Ritchie, J. M., and Greengard, P., 1966, On the mode of action of local anesthetics, Ann. Rev. Pharm. 6:405.Google Scholar
  356. Robertson, J. D., 1956, Some features of the ultrastructure of reptilian skeletal muscle, J. Biophys. Biochem. Cytol. 2:369.PubMedGoogle Scholar
  357. Robertson, J. D., 1960, The molecular structure and contact relationships of cell membranes, Progr. Biophys. Biophys. Chem. 10:343.Google Scholar
  358. Robertson, J. D., 1966, Granulo-fibrillar and globular substructure in unit membranes, Ann. N. Y. Acad. Sci. 137:421.PubMedGoogle Scholar
  359. Rodbell, M., 1966, Metabolism of isolated fat cells, II. The similar effects of phospholipase C (Clostridium perfringens a-toxin), and of insulin on glucose and amino acid metabolism, J. Biol. Chem. 241:130.PubMedGoogle Scholar
  360. Rojas, E., and Tobias, J. M., 1965, Membrane model: Association of inorganic cations with phospholipid monolayers, Biochim. Biophys. Acta 94:394.PubMedGoogle Scholar
  361. Rosenberg, P., and Condrea, E., 1968, Maintenance of axonal conduction and membrane permeability in presence of extensive phospholipid splitting, Biochem. Pharm. 17:2033.PubMedGoogle Scholar
  362. Rostgaard, J., and Behnke, O., 1965, Fine structural localization of adenine nucleoside phosphatase activity in the sarcoplasmic reticulum and the T system of rat myocardium, J. Ultrastructure Res. 12:579.Google Scholar
  363. Rubalcava, B., de Munoz, D. M., and Gitler, C., 1969, Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes, Biochemistry 8:2742.PubMedGoogle Scholar
  364. Rubin, B. B., and Katz, A. M., 1967, Sodium and potassium effects on skeletal muscle microsomal adenosinetriphosphatase and calcium uptake, Science 158:1189.PubMedGoogle Scholar
  365. Samaha, F., and Gergely, J., 1965, Ca2+ uptake and ATPase of human sarcoplasmic reticulum, J. Clin. Invest. 44:1425.PubMedGoogle Scholar
  366. Sanadi, D. R., 1965, Energy-linked reactions in mitochondria, Ann. Rev. Biochem. 34:21.PubMedGoogle Scholar
  367. Sandow, A., 1964, Potentiation of muscular contraction, Arch. Phys. Med. Rehabil. 45:62.PubMedGoogle Scholar
  368. Sandow, A., 1965, Excitation-contraction coupling in skeletal muscle, Pharmacol. Rev. 17:265.PubMedGoogle Scholar
  369. Sandow, A., and Brust, M., 1966, Caffeine potentiation of twitch tension in frog sartorius muscle, Biochem. Z. 345:232.Google Scholar
  370. Sandow, A., and Isaacson, A., 1963, Topochemical factors in twitch potentiation by zinc and uranyl ions, Fed. Proc. 22:403.Google Scholar
  371. Scales, B., and McIntosh, D. A. D., 1968a, Studies on radiocalcium uptake and the adenosine triphosphatases of skeletal and cardiac sarcoplasmic reticulum fractions (SRF), J. Pharm. Exp. Therap. 160:249.Google Scholar
  372. Scales, B., and McIntosh, D. A. D., 1968b, Effects of propranolol and its optical isomers on the radiocalcium uptake and the adenosine triphosphatases of skeletal and cardiac sarcoplasmic reticulum fractions (SRF), J. Pharm. Exp. Therap. 160:261.Google Scholar
  373. Schatzmann, H. J., 1962, Lipoprotein nature of red cell adenosine triphosphatase, Nature 196:677.PubMedGoogle Scholar
  374. Schuel, H., Lorand, L., Schuel, R., and Anderson, N. G., 1965, Isolation of relaxing particles from rat skeletal muscles in zonal centrifuges, J. Gen. Physiol. 48:737.PubMedGoogle Scholar
  375. Seidel, J. C., 1964, Comments on the existence of a soluble relaxing substance and on cofactors of the relaxation of muscle, Fed. Proc. 23:901.PubMedGoogle Scholar
  376. Sepp, T., Fekete, M., Kerenyi, T., and Martonosi, A., 1956, Adatok az adenosintrifoszforsav hatasmechanizmusahoz bekasziven, Kiserletes Orvostudomany 8:476.Google Scholar
  377. Seraydarian, K., and Mommaerts, W. F. H. M., 1965, Density gradient separation of sarcotubular vesicles and other particulate constituents of rabbit muscle, J. Cell Biol. 26:641.PubMedGoogle Scholar
  378. Sessa, G., and Weissmann, G., 1968, Phospholipid spherules (liposomes) as a model for biological membranes, J. Lipid Res. 9:310.PubMedGoogle Scholar
  379. Shanes, A. M., 1958, Electrochemical aspects of physiological and pharmacological action in excitable cells. Part II. The action potential and excitation, Pharm. Rev. 10:165.PubMedGoogle Scholar
  380. Shanes, A. M., and Bianchi, C. P., 1960, Radiocalcium release by stimulated and potassium treated sartorius muscles of the frog, J. Gen. Physiol. 43:481.PubMedGoogle Scholar
  381. Shimomura, O., Johnson, F. H., and Saiga, Y., 1962, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea, J. Cell. Comp. Physiol. 59:223.Google Scholar
  382. Shimomura, O., Johnson, F., and Saiga, Y., 1963a, Micro determination of calcium by aequorin luminescence, Science 140:1339.Google Scholar
  383. Shimomura, O., Johnson, F. H., and Saiga, Y., 1963b, Further data on the bioluminescent protein, aequorin, J. Cell. Comp. Physiol. 62:1.Google Scholar
  384. Simpson, F. O., and Oertelis, S. J., 1961, Relationship of the sarcoplasmic reticulum to sarcolemma in sheep cardiac muscle, Nature 189:758.Google Scholar
  385. Simpson, F. O., and Oertelis, S. J., 1962, The fine structure of sheep myocardial cells: Sarcolemmal invaginations and the transverse tubular system, J. Cell Biol. 12:91.PubMedGoogle Scholar
  386. Sjostrand, F. S., 1968, The membranes, In “Ultrastructure in Biological Systems” (A. J. Dalton and F. Haguenau, eds.), Vol. 4, p. 151, Academic Press, New York.Google Scholar
  387. Sjostrand, F. S., Andersson-Cedergren, E., and Karlsson, U., 1964, Myelin-like figures formed from mitochondrial material, Nature 202:1075.Google Scholar
  388. Skou, J. C., 1954a, Local anaesthetics. VI. Relation between blocking potency and penetration of a monomolecular layer of lipoids from nerves, Acta Pharmacol. Toxicol. 10:325.Google Scholar
  389. Skou, J. C., 1954b, Local anaesthetics. V. The action of local anaesthetics on monomolecular layers of stearic acid, Acta Pharmacol. Toxicol. 10:317.Google Scholar
  390. Skou, J. C., 1961, The relationship of a (Mg2+-Na+)-activated K+-stimulated enzyme or enzyme system to the active linked transport of Na+ and K+ across the cell membrane, In “Symposium on Membrane Transport and Metabolism, Prague” (A. Kleinzeller and Z. Kotyk, eds.), p. 228, Academic Press, New York.Google Scholar
  391. Skou, J. C., 1964, Enzymatic aspects of active linked transport of Na and K through the cell membrane, Progr. Biophys. Mol. Biol. 14:133.Google Scholar
  392. Smoly, J. M., Byington, K. H., Tan, W. C., and Green, D. E., 1968, On the fragmentation of mitochondria by diethylstilbestrol. II. On the relation of the released proteins to the mitochondrial membranes, Arch. Biochem. Biophys. 128:774.PubMedGoogle Scholar
  393. Somani, P., Fleming, J. G., Chan, G. K., and Lum, B. K. B., 1966, Antagonism of epinephrine-induced cardiac arhythmias by 4-(2-isopropylamino-l-hydroxyethyl)-methane sulfonanilide (MJ 1999), J. Pharm. Exp. Therap. 151:32.Google Scholar
  394. Sommer, J. R., and Hasselbach, W., 1967, The effect of glutaraldehyde and formaldehyde on the Ca2+ pump of the sarcoplasmic reticulum, J. Cell Biol. 34:902.PubMedGoogle Scholar
  395. Spiro, M. J., and McKibbin, J. M., 1956, The lipids of rat liver cell fractions, J. Biol. Chem. 219:643.PubMedGoogle Scholar
  396. Sreter, F. A., 1964, Comparative studies on white and red muscle fractions, Fed. Proc. 23: 903.Google Scholar
  397. Sreter, F. A., 1969, Temperature, pH and seasonal dependence of Ca-uptake and ATPase activity of white and red muscle microsomes, Arch. Biochem. Biophys. 134:25.PubMedGoogle Scholar
  398. Sreter, F. A., and Gergely, J., 1964, Comparative studies of the Mg activated ATPase and Ca-uptake of fractions of white and red muscle homogenates, Biochem. Biophys. Res. Commum. 16:438.Google Scholar
  399. Sreter, F. A., Ikemoto, N., and Gergely, J., 1967, Studies on the fragmented sarcoplasmic reticulum of normal and dystrophic mouse muscle, In “Exploratory Concepts in Muscular Dystrophy and Related Disorders,” Proceedings of the International Conference Convened by Muscular Dystrophy Associations of America, Harriman, New York, 1966, Excerpta Medica International Congress Series No. 147, p. 289.Google Scholar
  400. Stahl, W. L., Sattin, A., and Mcllwain, H., 1966, Separation of adenosine diphosphateadenosine triphosphate-exchange activity from the cerebral microsomal sodium-pluspotassium ion-stimulated adenosine triphosphatase, Biochem. J. 99:404.PubMedGoogle Scholar
  401. Staley, N. A., and Benson, E. S., 1968, The ultrastructure of frog ventricular cardiac muscle and its relationship to mechanisms of excitation contraction coupling, J. Cell Biol. 38:99.PubMedGoogle Scholar
  402. Stone, T. J., Buckman, T., Nordio, P. L., McConnell, H. M., 1965, Spin-labeled biomol-ecules, Proc. Nat. Acad. Sci. 54:1010.PubMedGoogle Scholar
  403. Stracher, A., and Dreizen, P., 1966, Structure and function of contractile protein myosin, Current Topics in Bioenergetics 1:153.Google Scholar
  404. Stryer, L., 1968, Fluorescence spectroscopy of proteins, Science 162:526.PubMedGoogle Scholar
  405. Takauji, M., Yamamoto, T., and Nagai, T., 1967, On the relaxing factor system in rabbit red muscle, Japan J. Physiol. 17:11.Google Scholar
  406. Tasaki, I., 1968, “Nerve Excitation: A Macromolecular Approach,” Charles C Thomas, Springfield, III.Google Scholar
  407. Tasaki, I., Watanabe, A., Sandlin, R., and Carnay, L., 1968, Changes in fluorescence, turbidity and birefringence associated with nerve excitation, Proc. Nat. Acad. Sci. 61:883.PubMedGoogle Scholar
  408. Tasaki, I., Carnay, L., Sandlin, R., and Watanabe, A., 1969, Fluorescence changes during conduction in nerves stained with acridine orange, Science 163:683.PubMedGoogle Scholar
  409. Tice, L. W., and Barrnett, R. J., 1962, Fine structural localization of adenosinetriphosphatase activity in heart muscle myofibrils, J. Cell Biol. 15:401.PubMedGoogle Scholar
  410. Tice, L. W., and Engel, A. G., 1966, Cytochemistry of phosphatases of the sarcoplasmic reticulum. II. In situ localization of the Mg-dependent enzyme, J. Cell Biol. 31:489.PubMedGoogle Scholar
  411. Tobias, J. M., 1958, Experimentally altered structure related to function in the lobster axon with an extrapolation to molecular mechanism in excitation, J. Cell. Comp. Physiol. 52:89.Google Scholar
  412. Tobias, J. M., 1960, Further studies on the nature of the excitable system in nerve, J. Gen. Physiol. 43:57.PubMedGoogle Scholar
  413. Uchida, K., Mommaerts, W. F. H. M., and Meretsky, D., 1965, Myosin in association with preparations of sarcotubular vesicles from muscle, Biochem. Biophys. Acta 104:287.PubMedGoogle Scholar
  414. Ulbrecht, G., and Ulbrecht, M., 1957, Phosphat-Austausch zwischen ATP and AD32 P durch hochgereinigte Aktomyosin-Präparate and gewaschene Muskelfibrillen, Biochim. Biophys. Acta 25:100.PubMedGoogle Scholar
  415. Ulbrecht, G., Ulbrecht, M., and Wustrow, H. J., 1957, Beruht der Phosphat-Austausch zwischen ATP and AD32P durch hochgereinigte Aktomyosin-Präparate auf dem Aktomyosin oder auf Verunreinigungen? Biochim. Biophys. Acta 25:110.PubMedGoogle Scholar
  416. Ulbrecht, M., 1962a, Beruht der Phosphat-Austausch zwischen Adenosintriphosphat und Adenosin-(32P)-diphosphat in gereinigten Fibrillen und Actomyosin-Präparaten auf einer Verunreinigung durch Muskeigrana?, Biochim. Biophys. Acta 57:438.Google Scholar
  417. Ulbrecht, M., 1962b, Der Austausch und die Abspaltung des r-Phosphates des Adenosintriphosphates durch Sarkosomen und kleine Grana des Kaninchen-Muskels, Biochim. Biophys. Acta 57:455.Google Scholar
  418. Urry, D. W., and Ji, T. H., 1968, Distortions in circular dichroism patterns of particulate (or membranous) systems, Arch. Biochem. Biophys. 128:802.PubMedGoogle Scholar
  419. Van Deenen, L. L. M., and de Haas, G. H., 1966, Phosphoglycerides and phospholipases, Ann. Rev. Biochem. 35:157.Google Scholar
  420. Vandenheuvel, F. A., 1963, Study of biological structure at the molecular level with stereo-model projections. I. The lipids in the myelin sheet of nerve, J. Am. Oil Chem. Soc. 40:455.Google Scholar
  421. Van der Kloot, W. G., 1966, Inhibitors of active Ca“ uptake by fragments of the sarcoplasmic reticulum of lobster muscle, Comp. Biochem. Physiol. 17:75.PubMedGoogle Scholar
  422. Van der Kloot, W. G., and Glovsky, J., 1965, The uptake of Ca2+ and Sr by fractions from lobster muscle, Comp. Biochem. Physiol. 15:547.PubMedGoogle Scholar
  423. Vanderkooi, J., and Martonosi, A., 1969a, The use of 8-anilino-l-naphthalene sulfonate as a conformational probe of biological membranes, Biophys. J. 9:235.Google Scholar
  424. Vanderkooi, J., and Martonosi, A., 1969b, Sarcoplasmic reticulum. VIII. Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes, Arch. Biochem. Biophys. 133:153.Google Scholar
  425. Vanderkooi, J., and Martonosi, A., 1970, Fluorescence studies on skeletal muscle microsomes during Ca2+ accumulation, Fed. Proc. 29:936.Google Scholar
  426. Vanderkooi, J., Duggan, P. F., and Martonosi, A., 1969, Unpublished observations.Google Scholar
  427. Varricchio, F., and Sanadi, D. R., 1967, Inhibition of mitochondrial respiration by progesterone and an azasteroid, Arch. Biochem. Biophys. 121:187.PubMedGoogle Scholar
  428. Vaughn Williams, E. M., 1958, The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records, Brit. J. Pharmacol. 13:276.Google Scholar
  429. Vegh, K., Spiegler, P., Chamberlain, C., and Mommaerts, W. F. H. M., 1968, The molecular size of the calcium transport ATPase of sarcotubular vesicles estimated from radiation inactivation, Biochim. Biophys. Acta 163:266.PubMedGoogle Scholar
  430. Veratti, E., 1902, Recherche sulle fine struttura della fibra muscolare striata, Memorie Inst. Lomb. Cl. Sci. e Nat. 19:87.Google Scholar
  431. Veratti, E., 1961, Investigations on the fine structure of the striated muscle fibre, J. Biophys. Biochem. Cytol. 10:3.Google Scholar
  432. Wadkins, C. L., and Glaze, R. P., 1967, Extraction and purification of an ATP-ADP exchange enzyme from beef liver mitochondria, Methods Enzymol. 10:537.Google Scholar
  433. Wallach, D. F. H., and Gordon, A., 1968, Lipid-protein interactions in cellular membranes, Fed. Proc. 27:1263.PubMedGoogle Scholar
  434. Wallach, D. F. H., and Zahler, P. H., 1966, Protein conformations in cellular membranes, Proc. Nat. Acad. Sci. 56:1552.PubMedGoogle Scholar
  435. Watanabe, S., 1955, Relaxing effects of EDTA on glycerol-treated muscle fibers, Arch. Biochem. Biophys. 54:559.PubMedGoogle Scholar
  436. Watanabe, S., 1957, Some observations with the glycerol-treated fiber of rabbit psoas muscle, In “Conference on the Chemistry of Muscular Contraction,” p. 95, Igaku-Shoin Ltd., Tokyo.Google Scholar
  437. Watanabe, S., and Sleator, W., Jr., 1957, EDTA relaxation of glycerol-treated muscle fibers, and the effects of magnesium, calcium and manganese ions, Arch. Biochem. Biophys. 68:81.PubMedGoogle Scholar
  438. Weber, A., 1959, On the role of calcium in the activity of adenosine 5’-triphosphate hydrolysis by actomyosin, J. Biol. Chem. 234:2764.PubMedGoogle Scholar
  439. Weber, A., 1966, Energized calcium transport and relaxing factors, In “Current Topics in Bioenergetics” (D. R. Sanadi, ed.), Vol. 1, p. 203, Academic Press, New York and London.Google Scholar
  440. Weber, A., 1968, The mechanism of the action of caffeine on sarcoplasmic reticulum, J. Gen. Physiol. 52:760.PubMedGoogle Scholar
  441. Weber, A., and Herz, R., 1961, Requirement for calcium in the syneresis of myofibrils, Biochem. Biophys. Res. Commun. 6:364.PubMedGoogle Scholar
  442. Weber, A., and Herz, R., 1963, The binding of calcium to actomyosin systems in relation to their biological activity, J. Biol. Chem. 238:599.PubMedGoogle Scholar
  443. Weber, A., and Herz, R., 1964, Study on the physiological mechanism regulating contraction and relaxation of actomyosin systems, In “Biochemistry of Muscle Contraction” (J. Gergely, ed.), p. 222, Little, Brown and Co., Boston.Google Scholar
  444. Weber, A., and Herz, R., 1968, The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum, J. Gen. Physiol. 52:750.PubMedGoogle Scholar
  445. Weber, A., and Winicur, S., 1961, The role of calcium in the superprecipitation of actomyosin, J. Biol. Chem. 236:3198.PubMedGoogle Scholar
  446. Weber, A., Herz, R., and Reiss, I., 1963, On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum, J. Gen. Physiol. 46:679.PubMedGoogle Scholar
  447. Weber, A., Herz, R., and Reiss, I., 1964a, Role of calcium in contraction and relaxation of muscle, Fed. Proc. 23:896.Google Scholar
  448. Weber, A., Herz, R., and Reiss, I., 1964b, The regulation of myofibrillar activity by calcium, Proc. Roy. Soc. London Ser. B 160:489.Google Scholar
  449. Weber, A., Herz, R., and Reiss, I., 1966, Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum, Biochem. Z. 345:329.Google Scholar
  450. Weber, A., Herz, R., and Reiss, I., 1967, The nature of the cardac relaxing factor, Biochem. Biophys. Acta 131:188.Google Scholar
  451. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecylsulfate–polyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406.PubMedGoogle Scholar
  452. Weissmann, G., 1965, Studies of lysosomes-VI. The effect of neutral steroids and bile acids on lysosomes in vitro, Biochem. Pharmacol. 14:525.PubMedGoogle Scholar
  453. Weissmann, G., and Keiser, H., 1965, Hemolysis and augmentation of hemolysis by neutral steroids and bile acids, Biochem. Pharmacol. 14:537.PubMedGoogle Scholar
  454. Wetlaufer, D. B., and Lovrien, R., 1964, Induction of reversible structural changes in proteins by nonpolar substances, J. Biol. Chem. 239:596.PubMedGoogle Scholar
  455. Willmer, E. N., 1961, Steroids and cell surfaces, Biol. Rev. Cambridge Phil. Soc. 36:368.Google Scholar
  456. Winegrad, S., 1965a, Autoradiographic studies of intracellular calcium in frog skeletal muscle, J. Gen. Physiol. 48:455.Google Scholar
  457. Winegrad, S., 1965b, The location of muscle calcium with respect to the myofibrils, J. Gen. Physiol. 48:997.Google Scholar
  458. Winegrad, S., 1968, Intracellular calcium movements of frog skeletal muscle during recovery from tetanus, J. Gen. Physiol. 51:65.PubMedGoogle Scholar
  459. Wirtz, K. W. A., and Zilversmit, D. B., 1968, Exchange of phospholipids between liver mitochondria and microsomes in vitro, J. Biol. Chem. 243:3596.Google Scholar
  460. Wrigglesworth, J. M., and Packer, L., 1968, Optical rotatory dispersion and circular dichroism studies on mitochondria: Correlation of ultrastructure and metabolic state with molecular conformational changes, Arch. Biochem. Biophys. 128:790.PubMedGoogle Scholar
  461. Yamamoto, T., and Tonomura, Y., 1967, Reaction mechanism of the CO2 dependent ATPase of sarcoplasmic reticulum from skeletal muscle, I. Kinetic studies, J. Biochem. (Tokyo) 62:558.Google Scholar
  462. Yamamoto, T., and Tonomura, Y., 1968, Reaction mechanism of the Ca2+ dependent ATPase of sarcoplasmic reticulum from skeletal muscle, II. Intermediate formation of phosphorylprotein, J. Biochem. (Tokyo) 64:137.Google Scholar
  463. Yasui, B., Fuchs, F., and Briggs, N. F., 1968, The role of the sulfhydryl groups of tropomyosin and troponin in the calcium control of actomyosin contractility, J. Biol. Chem. 243:735.PubMedGoogle Scholar
  464. Young, M., 1969, The molecular basis of muscle contraction, Ann. Rev. Biochem. 38:913.PubMedGoogle Scholar
  465. Yu, B. P., Masoro, E. J., and De Martinis, F. D., 1967a, Role of lipids in Ca2+ uptake and Mg+ ATPase activity of rat skeletal muscle sarcoplasmic reticulum, J. Am. Oil Chem. Soc. 44:384A.Google Scholar
  466. Yu, B. P., Masoro, E. J., and De Martinis, F. D., 1967b, Imidazole and sequestration of calcium ion by sarcoplasmic reticulum, Nature 216:822.Google Scholar
  467. Yu, B. P., De Martinis, F. D., and Masoro, E. J., 1968a, Isolation of Ca2+ sequestering sarcotubular membranes from rat skeletal muscle, Anal. Biochem. 24:523.Google Scholar
  468. Yu, B. P., De Martinis, F. D., and Masoro, E. J., 1968b, Relation of lipid structure of sarcotubular vesicles to Cat+ transport activity, J. Lipid Res. 9:492.Google Scholar
  469. Zebe, E., 1965, Zur Lokalisation ATP-spaltender Reaktionen im “sarkoplasmatischen Reticulum” quergestreifter Muskeln, Histochemie 5:32.PubMedGoogle Scholar
  470. Zebe, E., and Hasselbach, W., 1966, Über die Akkumulation von Calcium im sarkoplasmatischen Reticulum von Insectenmuskeln, Z. Naturforsch. 21:1248.Google Scholar
  471. Ashley, C.C., and Ridgway, E.B., 1970, On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres, J. Physiol. 209:105.PubMedGoogle Scholar
  472. Brody, I.A., 1966, Relaxing factor in denervated muscle: A possible explanation for fibrillations, Am. J. Physiol. 211:1277.PubMedGoogle Scholar
  473. Carafoli, E., Patriarca, P., and Rossi, C.S., 1969, A comparative study of the role of mitochondria and the sarcoplasmic reticulum in the uptake and release of Ca2+ by the rat diaphragm, J. Cell Physiol. 74:17.PubMedGoogle Scholar
  474. Chimoskey, J.E., and Gergely, J., 1968, Effect of norepinephrin, ouabain and pH on cardiac sarcoplasmic reticulum, Arch. Int. Pharmacodyn. 176:289.PubMedGoogle Scholar
  475. Cohen, A., and Selinger, Z., 1969, Calcium binding properties of sarcoplasmic reticulum membranes, Biochim. Biophys. Acta 183:27.PubMedGoogle Scholar
  476. Ebashi, S., and Endo, M., 1968, Calcium ion and muscle contraction, Progress in Biophys. and Mol. Biol. 18:123.Google Scholar
  477. Ebashi, S., Endo, M., and Ohtsuki, I., 1969, Control of muscle contraction, Quart. Rev. Biophys. 2:351.Google Scholar
  478. Endo, M., Tanaka, M., and Ogawa, Y., 1970, Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres, Nature 228:34.PubMedGoogle Scholar
  479. Fiehn, W., and Hasselbach, W., 1970, The effect of phospholipase A on calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmic vesicles, Eur. J. Biochem. 13:510.PubMedGoogle Scholar
  480. Ford, L.E., and Podolsky, R.F., 1970, Regenerative calcium release within muscle cells, Science 167:58.PubMedGoogle Scholar
  481. Gutmann, E., and Sandow, A., 1965, Caffeine-induced contracture and potentiation of contraction in normal and denervated muscle, Life Sciences 4:1149.PubMedGoogle Scholar
  482. Hasselbach, W., Fiehn, W., Makinose, M., and Migala, A.J., 1969, Calcium fluxes across isolated sarcoplasmic membranes in the presence and absence of ATP, In “The Molecular Basis of Membrane Function” (D.C. Tosteson, ed.), p. 299, Prentice-Hall, Inc.Google Scholar
  483. Huxley, H.E., 1969, The mechanism of muscular contraction, Science 164:1356.PubMedGoogle Scholar
  484. Inesi, G., and Landgraf, W.C., 1970, Spin-labelling studies of fragmented sarcoplasmic reticulum, Bioenergetics 1:355.Google Scholar
  485. Inesi, G., Maring, E., Murphy, A.F., and McFarland, B.H., 1970, A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase, Arch. Biochem. Biophys. 138:285.PubMedGoogle Scholar
  486. Katz, A.M., 1970, Contractile proteins of the heart, Physiol. Rev. 50:63.PubMedGoogle Scholar
  487. MacLennan, D.H., 1970, Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 245:4508.PubMedGoogle Scholar
  488. Panet, R., and Selinger, Z., 1970, Specific alkylation of the sarcoplasmic reticulum ATPase by N-ethyl-[1-14C] maleimide and identification of the labeled protein in acrylamide gel-electrophoresis, Eur. J. Biochem. 14:440.PubMedGoogle Scholar
  489. Peter, J.B., and Worsfold, M., 1969, Muscular dystrophy and other myopathies: Sarcotubular vesicles in early disease, Biochem. Med. 2:364.Google Scholar
  490. Samaha, F.J., and Gergely, J., 1969, Biochemical abnormalities of the sarcoplasmic reticulum in muscular dystrophy, New England J. Med. 280:184.Google Scholar
  491. Selinger, Z., Klein, M., and Amsterdam, A., 1969, Properties of particles prepared from sarcoplasmic reticulum by deoxycholate, Biochim. Biophys. Acta 183:19.PubMedGoogle Scholar
  492. Weber, A., 1971, Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis, J. Gen. Physiol. 57:50.PubMedGoogle Scholar
  493. Weber, A., 1971, Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum II. Inhibition of outflux in calcium free media, J. Gen. Physiol. 57:64.PubMedGoogle Scholar
  494. Winegrad, S., 1970, The intracellular site of calcium activation of contraction in frog skeletal muscle, J. Gen. Physiol. 55:77.PubMedGoogle Scholar
  495. Worsfold, M., and Peter, J.B., 1970, Kinetics of calcium transport by fragmented sarcoplasmic reticulum, J. Biol. Chem. 245:5545.PubMedGoogle Scholar
  496. Yu, B.P., and Masoro, E.J., 1970, Isolation and characterization of the major protein component of sarcotubular membranes, Biochem. 9:2909.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Anthony Martonosi
    • 1
  1. 1.Department of BiochemistrySt. Louis University School of MedicineSt. LouisUSA

Personalised recommendations