The Bacterial Membrane

  • Milton R. J. Salton


The ubiquity of cell membranes and cell surface structures has long been recognized as an essential element of cellular structure and function. Thus a surface membrane or envelope provides the cell with the necessary protective barrier which enables it to regulate the biochemical processes needed for biosynthesis, cell growth, and energy metabolism. Indeed, in the earliest microscopic studies of Anton van Leeuwenhoek the existence of a surface film or layer which held the “animalcules” together was anticipated. One almost senses Leeuwenhoek’s feeling of surprise when he recorded that he was unable to “discern any film” which “contained” these “clear globules” (i.e., bacteria) resolved under his primitive microscope. The concept of the structural and functional reality of cell membranes was given much substance by the early work of Gorter and Grendel (1925) and Danielli and Dayson (1935). These pioneers of the modern work on cell membranes established that biological membranes were essentially lipid—protein structures, and, moreover, a rather specific type of molecular architecture in the form of the bimolecular leaflet or sandwich structure was assigned to the membrane (Danielli and Dayson, 1935). Electron microscopy of thin sections of fixed, stained cells of various origins led Robertson (1959) to suggest the universality of the “unit” double-track membrane for all cells. The alternate electron dense—light-dense layering of the membrane profiles provided remarkable visual evidence which supported the molecular organization implicit in the Danielli—Dayson model.


Bacterial Membrane Bacillus Megaterium Teichoic Acid Halophilic Bacterium Protoplast Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abram, D., 1965, Electron microscope observations on intact cells, protoplasts, and the cytoplasmic membrane of Bacillus stearothermophilus, J. Bacteriol. 89:855–873.PubMedGoogle Scholar
  2. Abrams, A., and Baron, C., 1967, Isolation and subunit structure of streptococcal membrane adenosine triphosphatase, Biochemistry 6:225–229.PubMedCrossRefGoogle Scholar
  3. Abrams, A., and Baron, C., 1968, Reversible attachment of adenosine triphosphatase to streptococcal membranes and the effect of magnesium ions, Biochemistry 7:501–507.PubMedCrossRefGoogle Scholar
  4. Anderson, D. R., and Barile, M.F., 1965, Ultrastructure of Mycoplasma hominis, J. Bacteriol. 90:180–192.PubMedGoogle Scholar
  5. Anraku, Y., 1967, Reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli, J. Biol. Chem. 242:793–800.PubMedGoogle Scholar
  6. Anraku, Y., 1968, Transport of sugars and amino acids in bacteria, J. Biol. Chem. 243:3128–3235.PubMedGoogle Scholar
  7. Baddiley, J., 1968, The Leeuwenhoek Lecture, 1967, Teichoic acids and the molecular structure of bacterial walls, Proc. Roy. Soc. Ser. B 170:331–348.CrossRefGoogle Scholar
  8. Bakerman, S., and Wasemiller, G., 1967, Studies on structural units of human erythrocyte membrane. I. Separation, isolation and partial characterization, Biochemistry 6:1100–1113.PubMedCrossRefGoogle Scholar
  9. Bayer, M. E., 1968, Adsorption of bacteriophages to adhesions between walls and membrane of Escherichia coli, J. Viral. 2:346–356.Google Scholar
  10. Bayer, M. E., and Remsen, C. C., 1970, Structure of Escherichia coli after freeze-etching, J. Bacterial. 101:304–313.Google Scholar
  11. Benveniste, R. E., Ozanne, B. W., and Davies, J., 1969, Enzymatic inactivation of aminogylcoside antibiotics by R-factor-resistant Escherichia coli, Bacteriol. Proc., p. 48.Google Scholar
  12. Bergmann, W., 1962, Sterols: Their structure and distribution, in “Comparative Biochemistry” (M. Florkin and H. S. Mason), Vol. 3, pp. 103–162, Academic Press, New York.Google Scholar
  13. Birch-Andersen, A., Maaloe, O., and Sjöstrand, F. S., 1953, High-resolution electron micrographs of sections of E. coli, Biochim. Biophys. Acta 12:395–400.PubMedCrossRefGoogle Scholar
  14. Birdsell, D. C., and Cota-Robles, E. H., 1967, Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli, J. Bacteriol. 93:427–437.PubMedGoogle Scholar
  15. Biryuzova, V. I., Lukoyanova, M. A., Gel’man, N. S., and Oparin, A. I., 1964, Subunits in cytoplasmic membranes of Micrococcus lysodeikticus, Dokl. Akad. Nauk SSSR 156: 198.Google Scholar
  16. Bishop, D. G., Rutberg, L., and Samuelsson, B., 1967a, The chemical composition of the cytoplasmic membrane of Bacillus subtilis, Europ. J. Biochem. 2:448–453.CrossRefGoogle Scholar
  17. Bishop, D. G., Rutberg, L., and Samuelsson, B., 1967b, The solubilization of the cytoplasmic membrane of Bacillus subtilis by sodium dodecyl sulphate, Europ. J. Biochem. 2:454–459.CrossRefGoogle Scholar
  18. Bishop, D. H. L., and King., H. K., 1962, Ubiquinone and vitamin K bacteria. 2. Intracellular distribution in Escherichia coli and Micrococcus lysodeikticus, Biochem. J. 85:550–554.PubMedGoogle Scholar
  19. Bladen, H. A., and Mergenhagen, S. E., 1964, Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity, J. Bacterial. 88:1482–1492.Google Scholar
  20. Bodman, H., and Welker, N. E., 1969, Isolation of spheroplast membranes and stability of spheroplasts of Bacillus stearothermophilus, J. Bacterial. 97:924–935.Google Scholar
  21. Bolis, L., and Pethica, B. A., 1968, “Membrane Models and the Formation of Biological Membranes,” pp. 1, 6, 88, 138, 190, North-Holland Publishing Co., Amsterdam.Google Scholar
  22. Braun, V., and Schwarz, U., 1969, Structure, function and biosynthesis of the rigid layer of the Escherichia coli cell wall, J. Gen. Microbial. 57:iii.Google Scholar
  23. Brenner, S., Dark, F. A., Gerhardt, P., Jeynes, M. H., Kandler, O., Kellenberger, E., Klieneberger-Nobel, E., McQuillen, K., Rubio-Huertos, M., Salton, M. R. J., Strange, R. E., Tomcsik, J., and Weibull, C., 1958, Bacterial protoplasts, Nature 181:1713–1715.CrossRefGoogle Scholar
  24. Brown, A. D., 1963, The peripheral structures of gram-negative bacteria. IV. The cation sensitive dissolution of the cell membrane of the halophilic bacterium, Halobacterium halobium, Biochim. Biophys. Acta 75:425–435.PubMedCrossRefGoogle Scholar
  25. Brown, A. D., 1965, Hydrogen ion titrations of intact and dissolved lipoprotein membranes, J. Mol. Biol. 12:491–508.PubMedCrossRefGoogle Scholar
  26. Brown, A. D., and Shorey, C. D., 1963, The cell envelopes of two extremely halophilic bacteria, J. Cell Biol. 18:681–689.PubMedCrossRefGoogle Scholar
  27. Brown, J. W., 1965, Evidence for a magnesium-dependent dissociation of bacterial cytoplasmic membrane particles, Biochim. Biophys. Acta 94:97–101.PubMedCrossRefGoogle Scholar
  28. Brundish, D. E., Shaw, N., and Baddiley, J., 1967, The structure and possible function of the glycolipid from Staphylococcus lattis 13, Biochem. J. 105:885–889.PubMedGoogle Scholar
  29. Butler, T. F., Smith, G. L., and Grula, E. A., 1967, Bacterial cell membranes. I. Reaggregation of membrane subunits from Micrococcus lysodeikticus, Canad. J. Microbiol. 13: 1471–1479.CrossRefGoogle Scholar
  30. Chan, P. C., 1967, Reversible effect of sodium dodecyl sulfate on human erythrocyte membrane adenosine triphosphatase, Biochim. Biophys. Acta 135:53–60.PubMedCrossRefGoogle Scholar
  31. Chapman, D., 1968, Introduction. Recent physical studies of phospholipids and natural membranes. The nature of the interaction between protein and lipid during the formation of lipoprotein membranes, in “Biological Membranes, Physical Fact and Function,” pp. 1–3,125–202,203–232, Academic Press, New York.Google Scholar
  32. Chapman, D., Kamat, V. B., De Gier, J., and Penkett, S. A., 1968a, Nuclear magnetic resonance studies of erythrocyte membranes, J. Mol. Biol. 31:101–114.CrossRefGoogle Scholar
  33. Chapman, D., Kamat, V. B., and Levene, R. J., 1968b, Infrared spectra and the chain organization of erythrocyte membranes, Science 160:314–316.CrossRefGoogle Scholar
  34. Chapman, G. B., and Hillier, J., 1953, Electron microscopy of ultrathin sections of bacteria. I. Cellular division in Bacillus cereus, J. Bacterial. 66:362–373.Google Scholar
  35. Chesbro, W. R., and Lampen, J.O., 1968, Characteristics of secretion of penicillinase, alkaline phosphatase and nuclease by Bacillus species, J. Bacterial. 96:428–437.Google Scholar
  36. Cho, K. Y., and Salton, M. R. J., 1966, Fatty acid composition of bacterial membrane and wall lipids, Biochim. Biophys. Acta 116:73–97.PubMedGoogle Scholar
  37. Cohen, M., and Panos, C., 1966, Membrane lipid composition of Streptococcus pyrogenes and derived L form, Biochemistry 5:2385–2392.PubMedCrossRefGoogle Scholar
  38. Cohen-Bazire, G., and Kunisawa, R., 1963, The fine structure of Rhodospirillum rubrum, J. Cell Biol. 16:401–419.PubMedCrossRefGoogle Scholar
  39. Cohen-Bazire, G., Pfennig, N., and Kunisawa, R., 1964, The fine structure of green bacteria, J. Cell Biol. 22:207–225.PubMedCrossRefGoogle Scholar
  40. Cohen-Bazire, G., Kunisawa, R., and Poindexter, J. S., 1966, The internal membranes of Caulobacter crescentus, J. Gen. Microbial. 42:301–308.Google Scholar
  41. Cohen-Bazire, G., Kunisawa, R., and Pfennig, N., 1969, Comparative study of the structure of gas vacuoles, J. Bacterial. 100:1049–1061.Google Scholar
  42. Conti, S. F., Jacobs, N. J., and Gray, C. T., 1968, Ultrastructure and respiratory capacity of Staphylococcus and Bacillus grown under aerobic and anaerobic conditions, J. Bacterial. 96:554–556.Google Scholar
  43. Costerton, J. W., Forsberg, C., Matula, T. I., Buckmire, F. L. A., and MacLeod, R. A., 1967, Nutrition and metabolism of marine bacteria. XVI. Formation of protoplasts, spheroplasts, and related forms from a gram-negative marine bacterium, J. Bacteriol. 94:1764–1777.PubMedGoogle Scholar
  44. Cota-Robles, E. H., Marr, A. G., and Nilson, E. H., 1958, Submicroscopic particles in extracts of Azotobacter agilis, J. Bacteriol. 75:243–252.Google Scholar
  45. Danielli, J. F., and Dayson, H., 1935, A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol. 5:495–508.CrossRefGoogle Scholar
  46. Davie, J. M., and Brock, T. D., 1966, Effect of teichoic acid on resistance to the membranelytic agent of Streptococcus zymogenes, J. Bacteriol. 92:1623–1631.PubMedGoogle Scholar
  47. De Petris, S., 1967, Ultrastructure of the cell wall of Escherichia coli and chemical nature of its constituent layers, J. Ultrastruct. Res. 19:45–83.PubMedCrossRefGoogle Scholar
  48. De Siervo, A. J., and Salton, M. R. J., 1970, Bacteriol. Proc., I:69.Google Scholar
  49. De Souza, N. J., and Nes, W. R., 1968, Sterols: Isolation from a blue-green alga, Science 162:363.PubMedCrossRefGoogle Scholar
  50. Drews, G., and Giesbrecht, P., 1963, Zur Morphogenese der Bakterien-“Chromatophoren” (-Thylakoide) und zur Synthese des Bakteriochlorophylls bei Rhodopseudomonas spheroides and Rhodospirillum rubrum, Zbl. Bakt. (1 Abt. Orgi.) 190:508–535.Google Scholar
  51. Drews, G., Biedermann, M., and Schön, G., 1967, Zur Regulation der Synthese des bakterien Photosyntheseapparates, Z. Bakteriol. (Org.) 205:38–41.Google Scholar
  52. Echlin, P., 1964, The fine structure of the blue-green alga Anacystis montana f. minor grown in continuous illumination, Protoplasma 58:439–457.CrossRefGoogle Scholar
  53. Edwards, M. R., and Stevens, R. W., 1963, Fine structure of Listeria monocytogenes, J. Bacteriol. 86:414–428.PubMedGoogle Scholar
  54. Ellar, D. J., and Freer, J. H., 1969, The isolation and characterization of mesosome material from Micrococcus lysodeikticus, J. Gen. Microbiol. 58:vii.PubMedGoogle Scholar
  55. Ellar, D. J., Lundgren, D. G., and Slepecky, R. A., 1967, Fine structure of Bacillus megaterium during synchronous growth, J. Bacteriol. 94:1189–1205.PubMedGoogle Scholar
  56. Engelman, D. M., Terry, T. M., and Morowitz, H. J., 1967, Characterization of the plasma membrane of Mycoplasma laidlawii. I. Sodium dodecyl sulfate solubilization, Biochim. Biophys. Acta 135:381–390.PubMedCrossRefGoogle Scholar
  57. Fairbanks, G., 1969, Envelope proteins of Escherichia coli: Electrophoretic fractionation and partial characterization of major components, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass.Google Scholar
  58. Fernandez-Moran, H., Oda, T., Blair, P. V., and Green, D. E., 1964, A macromolecular repeating unit of mitochondrial structure and function, J. Cell Biol. 22:63–100.PubMedCrossRefGoogle Scholar
  59. Ferrandes, B., Chaix, P., and Ryter, A., 1966, Localization des cytochromes de Bacillus subtilis dans les structures mesosomiques, Compt. Rend. 263:1632–1635.Google Scholar
  60. Fiil, A., and Branton, D., 1969, Changes in the plasma membrane of Escherichia coli during magnesium starvation, J. Bacteriol. 98:1320–1327.PubMedGoogle Scholar
  61. Fitz-James, P. C., 1960, Participation of the cytoplasmic membrane in the growth and spore formation of bacilli, J. Biophys. Biochem. Cytol. 8:507–528.PubMedCrossRefGoogle Scholar
  62. Fitz-James, P. C., 1964, Fate of the mesosomes of Bacillus megaterium during protoplasting, J. Bacteriol. 87:1483–1491.PubMedGoogle Scholar
  63. Fitz-James, P. C., 1967, A functional and structural comparison of separated fractions of mesosomes and plasma membrane of bacteria, Protides Biol. Fluids 15:289–301.Google Scholar
  64. Fitz-James, P. C., 1968, The collection of mesosome vesicles extruded during protoplasting, in “L-forms” (L. B. Guze, ed.), pp. 124–143, Williams and Wilkins, Baltimore.Google Scholar
  65. Fox, C. F., and Kennedy, E. P., 1965, Specific labeling and partial purification of the M protein, a component of the p-galactoside transport system of Escherichia coli, Proc. Nat. Acad. Sci. 54:891–899.PubMedCrossRefGoogle Scholar
  66. Fox, C. F., Carter, J. R., and Kennedy, E. P., 1967, Genetic control of the membrane protein components of the lactose transport system of Escherichia coli, Proc. Nat. Acad. Sci. 57:698–705.PubMedCrossRefGoogle Scholar
  67. Freer, J. H., and Salton, M. R. J., 1970, in “Microbial Toxins” (S. J. Ajl, G. Weinbaum, and S. Kadis), Academic Press, New York (in press).Google Scholar
  68. Freer, J. H., Kim, K. S., Krauss, M. R., Beaman, L., and Barksdale, L., 1969, Ultrastructural changes in bacteria isolated from cases of leprosy, J. Bacteriol. 100:1062–1075.PubMedGoogle Scholar
  69. Frey-Wyssling, A., 1967, Gymnoplasts instead of “protoplasts,” Nature 216:516.PubMedCrossRefGoogle Scholar
  70. Fuller, R. C., Conti, S. F., and Mellin, D. B., 1963, in “Bacterial Photosynthesis” p. 71, Antioch Press, Yellow Springs, Ohio.Google Scholar
  71. Gel’man, N. S., Lukoyanova, M. A., and Ostrovskii, D. N., 1967, in “Respiration and Phosphorylation of Bacteria,” pp. 1–238, Plenum Press, New York.Google Scholar
  72. Ghosh, B. K., and Murray, R. G. E., 1967, Fine structure of Listeria monocytogenes in relation to protoplast formation, J. Bacteriol. 93:411–426.PubMedGoogle Scholar
  73. Ghosh, B. K., and Murray, R. G. E., 1969, Fractionation and characterization of theplasma and mesosome membrane of Listeria monocytogenes,J. Bacteriol. 97:426–440.PubMedGoogle Scholar
  74. Ghosh, B. K., Lampen, J. O., and Remsen, C. C., 1969, Periplasmic structure of frozenetched and negatively starved cells of Bacillus licheniformis as correlated with penicillinase formation, J. Bacteriol. 100:1002–1009.PubMedGoogle Scholar
  75. Ghuysen, J. M., 1968, Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism, Bacteriol. Rev. 32:425–464.PubMedGoogle Scholar
  76. Giesbrecht, P., and Drews, G., 1962, Elektronenmikroskopische Untersuchungen über die Entwicklung der “Chromatophoren” von Rhodospirillum molischianum Giesberger, Arch. Mikrobiol. 43:152–161.PubMedCrossRefGoogle Scholar
  77. Gilby, A. R., Few, A. V., and McQuillen, K., 1958, The chemical composition of the protoplast membrane of Micrococcus lysodeikticus,Biochim. Biophys. Acta 29:21–29.PubMedCrossRefGoogle Scholar
  78. Glauert, A. M., 1962, Fine structure of bacteria, Brit. Med. Bull. 18, 245–250.PubMedGoogle Scholar
  79. Glauert, A. M., and Thornley, M. J., 1969, The topography of the bacterial cell wall, Ann. Rev. Microbiol. 23:159–198. CrossRefGoogle Scholar
  80. Goldfine, H., 1968, Lipid chemistry and metabolism, Ann. Rev. Biochem. 37:303–330.PubMedCrossRefGoogle Scholar
  81. Gorchein, A., 1968, The relation between the pigment content of isolated chromatophores and that of the whole cell in Rhodopseudomonas spheroides,Proc. Roy. Soc. Ser. B 170: 247–254.CrossRefGoogle Scholar
  82. Gorchein, A., Neuberger, A., and Tait, G. H., 1968a, The isolation and characterization of subcellular fractions from pigmented and unpigmented cells of Rhodopseudomonas spheroides, Proc. Roy. Soc. Ser. B 170:229–246.CrossRefGoogle Scholar
  83. Gorchein, A., Neuberger, A., and Tait, G. H., 1968b, Metabolic turnover of the lipids of Rhodopseudomonas spheroides,Proc. Roy. Soc. Ser. B 170:311–318.CrossRefGoogle Scholar
  84. Gorter, E., and Grendel, F., 1925, On bimolecular layers of lipids on the chromocytes of the blood, J. Exp. Med. 41:439–443. PubMedCrossRefGoogle Scholar
  85. Gray, G. W., and Thurman, P. F., 1967, A membrane fraction obtained by disintegration of cells of Pseudomonas aeruginosa, Biochim. Biophys. Acta 135:947–958.PubMedCrossRefGoogle Scholar
  86. Green, D. E., and Perdue, J. F.,1966 Membranes as expressions of repeating units, Proc. Nat. Acad. Sci. 55:1295–1302.PubMedCrossRefGoogle Scholar
  87. Grula, E. A., Butler, T. F., King, R. D., and Smith, G. L., 1967, Bacterial cell membranes. II. Possible structure of the basal membrane continuum of Micrococcus lysodeikticus, Canad. J. Microbiol. 13:1499–1507.CrossRefGoogle Scholar
  88. Harold, F. M., 1970, Advan. Microbial Physiol. 4 (in press).Google Scholar
  89. Harold, F. M., Baarda, J. R., Baron, C., and Abrams, A., 1969, Dio 9 and chlorhexidine; inhibitors of membrane-bound ATPase and of cation transport in Streptococcus faecalis, Biochim. Biophys. Acta 183:129–136.Google Scholar
  90. Hay, J. B., Wicken, A. J., and Baddiley, J., 1963, The location of intracellular teichoic acids, Biochim. Biophys. Acta 71:188–190.PubMedCrossRefGoogle Scholar
  91. Hendler, R. W., 1968, “Protein Biosynthesis and Membrane Biochemistry,” p. 296, John Wiley and Sons, New York.Google Scholar
  92. Heppel, L. A., 1969, The effect of osmotic shock on release of bacterial proteins and on active transport, J. Gen. Physiol. 54:95s-113s.CrossRefGoogle Scholar
  93. Heptinstall, S., Archibald, A. R., and Baddiley, J., 1970, Teichoic acids and membrane function in bacteria, Nature 225:519–521.PubMedCrossRefGoogle Scholar
  94. Hickman, D. D., and Frenkel, A. W., 1959, The structure of Rhodospirillum rubrum, J. Biophys. Biochem. Cytol. 6:277–284.PubMedCrossRefGoogle Scholar
  95. Higashi, Y. Strominger, J. L., and Sweeley, C. C., 1967, Structure of a lipid intermediate in cell wall peptidoglycan synthesis: A derivative of a C55 isoprenoid alcohol, Proc. Nat. Acad. Sci. 57:1878–1884.PubMedCrossRefGoogle Scholar
  96. Holt, S. C., and Marr, A. G., 1965, Isolation and purification of the intracytoplasmic membranes of Rhodospirillum rubrum, J. Bacterial. 89:1413–420.Google Scholar
  97. Holt, S. C., Conti, S. F., and Fuller, R. C., 1966, Photosynthetic apparatus in the green bacterium Chloropseudomonas ethylicum, J. Bacterial. 91:311–323.CrossRefGoogle Scholar
  98. Hurst, A., and Stubbs, J. M., 1969, Electron microscopic study of membranes and walls of bacteria and changes occurring during growth initiation, J. Bacterial. 97:1466–1479.Google Scholar
  99. Ikawa, M., 1967, Bacterial phosphatides and natural relationships, Bacterial. Rev. 31:54–64. Imai, K., Asano, A., and Sato, R., 1967, Oxidative phosphorylation in Micrococcus denitrificans. I. Preparation and properties of phosphorylating membrane fragments, Biochim. Biophys. Acta 143:462–476.CrossRefGoogle Scholar
  100. Ishikawa, S., and Lehninger, A. L., 1962, Reconstitution of oxidative phosphorylation in preparations from Micrococcus lysodeikticus, J. Biol. Chem. 273:2401–2408.Google Scholar
  101. Joo, C. N., and Kates, M., 1968, Synthesis of the phyanyl diether analogs of phosphatidyl glycerophosphate and phosphatidyl glycerol present in Halobacterium cutirubrum, Biochim. Biopys. Acta 152:800–803.Google Scholar
  102. Kaback, H. R., and Stadtman, E. R., 1966, Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia colt,Proc. Nat. Acad. Sci. 55:920–927.PubMedCrossRefGoogle Scholar
  103. Kahane, I., and Razin, A., 1969, Synthesis and turnover of membrane protein and lipid in Mycoplasma laidlawii, Biochim. Biophys. Acta 183:79–89.PubMedCrossRefGoogle Scholar
  104. Kates, M., 1964, Bacterial lipids, Advan. Lipid Res. 2:17–90.Google Scholar
  105. Kates, M., 1966, Biosynthesis of lipids in microorganisms, Ann. Rev. Microbial. 20:13–44.CrossRefGoogle Scholar
  106. Kates, M., Sastry, P. S., and Yengoyan, L. S., 1963, Isolation and characterization of a diether analog of phosphatidyl glycerophosphate from Halobacterium cutirubrum, Biochim. Biophys. Acta 70:705–707.PubMedCrossRefGoogle Scholar
  107. Kates, M., Palameta, B., Joo, C. N., Kushner, D. J., and Gibbons, N. E., 1966, Aliphatic diether analogs of glyceride-derived lipids. IV. The occurrence of di-O-dihydrophytylglycerol ether containing lipids in extremely halophilic bacteria, Biochemistry 5:4092–4099.CrossRefGoogle Scholar
  108. Kellenberger, E., and Ryter, A. 1958, Cell wall and cytoplasmic membrane of Escherichia colt, J. Biophys. Biochem. Cytol. 4:323–326.PubMedCrossRefGoogle Scholar
  109. Kopaczyk, K., Asai, J., and Green, D. E., 1968, Reconstitution of the repeating unit of the mitochondrial inner membrane, Arch. Biochem. Biopyhs. 126:358–379.CrossRefGoogle Scholar
  110. Korn, E. D., 1966, Structure of biological membranes, Science 153:1491–1498.PubMedCrossRefGoogle Scholar
  111. Korn, E. D., 1968, Structure and function of the plasma membrane, a biochemical perspective, J. Gen. Physiol. 52:257s-278s.CrossRefGoogle Scholar
  112. Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Nat. Acad. Sci. 52:1067–1074.PubMedCrossRefGoogle Scholar
  113. Kushner, D. J., and Onishi, H., 1966, Contribution of protein and lipid components to the salt response of envelopes of an extremely halophilic bacterium, J. Bacterial. 91:653–600.Google Scholar
  114. Lark, K. G., and Lark, C., 1966, Regulation of chromosome replication in Escherichia colt: A comparison of the effects of phenethyl alcohol treatment with those of amino acid starvation, J. Mol. Biol. 20:9–19.PubMedCrossRefGoogle Scholar
  115. Lascelles, J., 1962, The chromatophores of photosynthetic bacteria, J. Gen. Microbial. 29:47–52.Google Scholar
  116. Lascelles, J., 1965, Comparative aspects of structures associated with electron transport, Symp. Soc. Gen. Microbial. 15:32–56.Google Scholar
  117. Lascelles, J., and Szilagyi, J. F., 1965, Phospholipid synthesis by Rhodopseudomonas spheroides in relation to the formation of photosynthetic pigments, J. Gen. Microbial. 38: 55–64.Google Scholar
  118. Leive, L., 1965, Release of lipopolysaccharide by EDTA treatment of E. coli, Biochem. Biophys, Res. Commun. 21:290–296.Google Scholar
  119. Leive, L., Shovlin, V. K., and Mergenhagen, S. E., 1968, Physical, chemical, and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediaminetetraacetate, J. Biol. Chem. 243:6384–6391.PubMedGoogle Scholar
  120. Lenard, J., and Singer, S. J., 1966, Protein conformation in cell membrane preparations as studied by optical rotary dispersion and circular dichroism, Proc. Nat. Acad. Sci. 56: 1828–1835.PubMedCrossRefGoogle Scholar
  121. Lennarz, W. J., 1966, Lipid metabolism in the bacteria, Advan. Lipid Res. 4:175–225.Google Scholar
  122. Levin, E. Y., and Bloch, K., 1964, Absence of sterols in blue-green algae, Nature 202:90–91.PubMedCrossRefGoogle Scholar
  123. Levine, A. J., and Sinsheimer, R. L., 1968, The process of infection with bacteriophage X 0174. XIX. Isolation and characterization of a chloramphenicol-resistant protein from ¢X-infected cells, J. Mol. Biol. 32:567–578.PubMedCrossRefGoogle Scholar
  124. Luderitz, O., Jann, K., and Wheat, R., 1968, Somatic and capsular antigens of gram-negative bacteria, Comprehensive Biochem. 26A:105–228.Google Scholar
  125. MacDougall, J. C., and Phizackerley, P. J. R., 1969, Isomers of glucosaminylphosphatidylgycerol in Bacillus megaterium, Biochem. J. 114:361–367.PubMedGoogle Scholar
  126. McQuillen, K., 1960, Bacterial protoplasts, in “The Bacteria” (I. C. Gunsalus and R. Y. Stanier, eds.), Vol. 1, pp. 249–359, Academic Press, New York.Google Scholar
  127. Maddy, A. H., 1964, The solubilization of the protein of the ox erythrocyte ghost, Biochim. Biophys. Acta 88:448–449.PubMedGoogle Scholar
  128. Maddy, A. H., 1966, The properties of the protein of the plasma membrane of ox erythrocytes, Biochim. Biophys. Acta 117:193–200.PubMedCrossRefGoogle Scholar
  129. Maddy, A. H., and Malcolm, B. R., 1965, Protein conformations in the plasma membrane, Science 150:1616–1618.PubMedCrossRefGoogle Scholar
  130. Marchesi, V. T., and Palade, G. E., 1967, The localization of Mg-Na-K-activated adenosine triphosphatase of red cell ghost membranes, J. Cell. Biol. 35:385–404.PubMedCrossRefGoogle Scholar
  131. Matthews, M. M., and Sistrom, W. R., 1959, Intracellular location of carotenoid pigments some respiratory enzymes in Sarcina lutea, J. Bacterial. 78:778–787.Google Scholar
  132. Miura, T., and Mizushima, S., 1968, Separation by density gradient centrifugation of two types of membranes from spheroplast membrane of Escherichia coli K 12, Biochim. Biophys. Acta 150:159–161.PubMedCrossRefGoogle Scholar
  133. Moor, H., 1964, Die Gefrier-Fixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie, Z. Zellforsch. Mikroskop. Anat. 62:546–580.CrossRefGoogle Scholar
  134. Morton, R. K., 1950, Separation and purification of enzymes associated with insoluble particles, Nature 166:1092–1095.PubMedCrossRefGoogle Scholar
  135. Mühlethaler, K., Moor, H., and Szarkowski, J. W., 1965, The ultrastructure of the chloroplast lamellae, Planta 67:305–323.CrossRefGoogle Scholar
  136. Munoz, E., Freer, J. H., Ellar, D. J., and Salton, M. R. J., 1968, Membrane-associated ATPase activity from Micrococcus lysodeikticus, Biochim. Biophys. Acta 150:531–533.PubMedCrossRefGoogle Scholar
  137. Munoz, E., Salton, M. R. J., Ng, M.H., and Schor, M. T., 1969, Membrane adenosine triphosphatase of Micrococcus lysodeikticus, Europ. J. Biochem. 7:490–501.PubMedCrossRefGoogle Scholar
  138. Munoz, E., Salton, M. R. J., and Ellar, D. J., 1970, Fed. Europ. Biochem. Soc. Symp. 20, 51–58.Google Scholar
  139. Murray, R. G. E., 1963, On the cell wall structure of Spirillum Serpens,Canad. J. Microbiol. 9:381–392.CrossRefGoogle Scholar
  140. Murray, R. G. E., 1968, Bacterial cell wall anatomy in relation to the formation of spheroplasts and protoplasta, in “Microbial Protoplasta, Spheroplasts and L-forms” (L. B. Guze, ed.), p. 1, Williams and Wilkins, Baltimore.Google Scholar
  141. Murray, R. G. E., and Watson, S. W., 1965, Structure of Nitrosocystis oceanus and comparison with Nitrosomonas and Nitrobacter, J. Bacteriol. 89:1594–1609.PubMedGoogle Scholar
  142. Murray, R. G. E., Steed, P., and Elson H. E., 1965, The location of the mucopeptide in sections of the cell wall of Escherichia coli and other gram-negative bacteria, Canad. J. Microbiol. 11:547–560.CrossRefGoogle Scholar
  143. Muschel, L. H., and Gustafson, L., 1968, Antibiotic, detergent and complement sensitivity of Salmonella typhimurium after ethylenediaminetetraacetic acid treatment, J. Bacteriol. 95: 2010–2013.PubMedGoogle Scholar
  144. Nachbar, M. S., and Salton, M. R. J., 1970, XXXXX in “Surface Chemistry of Biological Systems” (M. Blank, ed.), p. 175, Plenum Press, New York.Google Scholar
  145. Nakane, P. K., Nichoalds, G. E., and Oxender, D. L., 1968, Cellular localization of leucine-binding protein from Escherichia coli, Science 161:182–183.PubMedCrossRefGoogle Scholar
  146. Nanninga, N., 1968, Structural features of mesosomes (chondrioids) of Bacillus subtilis after freeze-etching, J. Cell Biol. 39:251–263.PubMedCrossRefGoogle Scholar
  147. Nanninga, N., 1969, Preservation of the ultrastructure of Bacillus subtilis by chemical fixation as verified by freeze-etching, J. Cell Biol. 42:733–744.PubMedCrossRefGoogle Scholar
  148. Nanninga, N., 1970, Ultrastructure of the cell envelope of Escherichia coli B after freeze-etching, J. Bacteriol. 101:297–303.PubMedGoogle Scholar
  149. Nermut, M. V., and Murray, R. G. E., 1967, Ultrastructure of cell wall of Bacillus polymyxa, J. Bacteriol. 93:1949.PubMedGoogle Scholar
  150. Neu, H. C., and Heppel, L. A., 1964, The release of ribonuclease into the medium when E. tali cells are converted to spheroplasts, Biochem. Biophys. Res. Commun. 14:109–112.PubMedCrossRefGoogle Scholar
  151. Newton, J. W., 1958, in “The Photochemical Apparatus. Its Structure and Function,” t11, p. 289, Brookhaven Symposium.Google Scholar
  152. Newton, J. W., and Newton, G. A., 1957, Composition of the photoactive subcellular particles from Chromatium, Arch. Biochem. Biophys. 71:250–256.PubMedCrossRefGoogle Scholar
  153. Nisonson, I., Tannenbaum, M., and Neu, H. C., 1969, Surface localization of Escherichia coli 5’-nucleotidase by electron microscopy, J. Bacteriol. 100:1083–1090.PubMedGoogle Scholar
  154. Norton, J. E., Bulmer, G. S., and Sokatch, J. R., 1963, The oxidation of n-alanine by cell membranes of Pseudomonas aeruginosa, Biochim. Biophys. Acta 78:136–147.PubMedCrossRefGoogle Scholar
  155. Okuda, S., and Weinbaum, G., 1969, Immunologic cross-reactivity of Escherichia coli B envelope glycoproteins with some animal and plant cell membrane proteins, J. Immunol. 103:869–871.PubMedGoogle Scholar
  156. O’Leary, W. M., 1967, in “The Chemistry and Metabolism of Microbial Lipids,” p. 93, The World Publishing Co., Cleveland, Ohio.Google Scholar
  157. Op den Kamp, J. A. F., van Iterson, W., and van Deenen, L. L. M., 1967, Studies on the phospholipids and morphology of protoplasts of Bacillus megaterium, Biochim. Biophys. Acta 135:862–884.CrossRefGoogle Scholar
  158. Op den Kamp, J. A. F., Bonsen, P. P. M., and van Deenen, L. L. M., 1969, Structural investigations of glucosaminyl phosphatidylglycerol from Bacillus megaterium, Biochim. Biophys. Acta 176:298–305Google Scholar
  159. Oppenheim, J., and Marcus, L., 1970, Correlation of ultrastructure in Azotobacter vinelandil with nitrogen source for growth, J. Bacteriol. 101, 286–291.PubMedGoogle Scholar
  160. Oram, J. D., and Reiter, B., 1968, The adsorption of phage to group N streptococci. The specificity of adsorption and the location of phage receptor substances in cell-wall and plasma-membrane fractions, J. Gen. Virol. 3:103–119.PubMedCrossRefGoogle Scholar
  161. Ozanne, B., Benveniste, R., Tipper, D., and Davies, J., 1969, Aminoglycoside antibiotics: Inactivation by phosphorylation in Escherichia coli carrying R factors, J. Bacterial. 100:1144–1146.Google Scholar
  162. Pangborn, J., Marr, A. G., and Robrish, S. A., 1962, Localization of respiratory enzymes in intracytoplasmic membranes of Azotobacter agilis, J. Bacteriol. 84:669–678.PubMedGoogle Scholar
  163. Pardee, A. B., and Watanabe, K., 1968, Location of sulfate-binding protein in Salmonella typhimurium, J. Bacteriol. 96:1049–1054.PubMedGoogle Scholar
  164. Pfister, R. M., and Lundgren, D. G., 1964, Electron microscopy of polyribosomes within Bacillus cereus, J. Bacteriol. 88:1119–1129.PubMedGoogle Scholar
  165. Piperno, J. R., and Oxender, D. L., 1966, Amino acid-binding protein released from Escherichia coli by osmotic shock, J. Biol. Chem. 241:5732–5734.PubMedGoogle Scholar
  166. Pollock, M. R., 1962, Exoenzymes, in “The Bacteria” (I. C. Gunsalus and R. Y. Stanier, eds.), Vol. 4, pp. 121–178, Academic Press, New York.Google Scholar
  167. Pontefract, R. D., Bergeron, G., and Thatcher, F. S., 1969, Mesosomes in Escherichia coli, J. Bacteriol. 97:367–375.PubMedGoogle Scholar
  168. Pullman, M. E., and Schatz, G., 1967, Mitochondrial oxidations and energy coupling, Ann. Rev. Biochem. 36:539–610.PubMedCrossRefGoogle Scholar
  169. Racker, E., 1969, Resolution and reconstruction of a mammalian membrane, J. Gen. Physiol. 54:38s-49s.CrossRefGoogle Scholar
  170. Razin, S., 1967, The cell membrane of Mycoplasma, Ann. N. Y. Acad. Sci. 143:115–129.PubMedCrossRefGoogle Scholar
  171. Razin, S., Morowitz, H. J., and Terry, T. M., 1965, Membrane subunits of Microplasma laidlawii in their assembly to membranelike structures, Proc. Nat. Acad. Sci. 54:219–225.PubMedCrossRefGoogle Scholar
  172. Reaveley, D. A., 1968, The isolation and characterization of cytoplasmic membranes and mesosomes of Bacillus licheniformis 6346, Biochem. Biophys. Res. Commun. 30:649–655.PubMedCrossRefGoogle Scholar
  173. Reaveley, D. A., and Rogers, H. J., 1969, Some enzymic activities and chemical properties of the mesosomes and cytoplasmic membranes of Bacillus licheniformis 6346, Biochem. J. 113:67–79.PubMedGoogle Scholar
  174. Reitz, R. C., and Hamilton, J. G., 1968, The isolation and identification of two sterols from two species of blue-green algae, Comp. Biochem. Physiol. 25:401–416.PubMedCrossRefGoogle Scholar
  175. Remsen, C. C., 1966, The fine structure of frozen-etched Bacillus cereus spores, Arch. Mikrobiol. 54:266–275.PubMedCrossRefGoogle Scholar
  176. Remsen, C. C., 1968, Fine structure of the mesosome and nucleoid in frozen-etched Bacillus subtilis,Arch. Mikrobiol. 61:40–47.PubMedCrossRefGoogle Scholar
  177. Remsen, C. C., and Lundgren, D. G., 1966, Electron microscopy of the cell envelope of Ferrobacillus ferroxidans prepared by freeze-etching and chemical fixation techniques, J. Bacteriol. 92:1765–1771.PubMedGoogle Scholar
  178. Remsen, C. C., Valois, F. W., and Watson, S. W., 1967, Fine structure of the cytomembranes of Nitrosocystis oceanus,J. Bacteriol. 94:422–433.PubMedGoogle Scholar
  179. Remsen, C. C., Watson, S. W., and Bernheimer, A. W., 1970, Biochem. Biophys. Res. Commun. 40, 1297–1304.PubMedCrossRefGoogle Scholar
  180. Robertson, J. D., 1959, The ultrastructure of cell membranes and their derivatives, Biochem. Soc. Symp. 16:3–43.PubMedGoogle Scholar
  181. Robrish, S. A., and Marr, A. G., 1962, Location of enzymes in Azotobacter agilis, J. Bacteriol. 83:158–168.PubMedGoogle Scholar
  182. Rodwell, A. W., 1963, The steroid growth-requirement of Mycoplasma mycoides, J. Gen. Microbiol. 32:91–101.PubMedGoogle Scholar
  183. Roseman, S., 1969, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen. Physiol. 54:138s-184s.CrossRefGoogle Scholar
  184. Rottem, S., and Razin, S., 1967, Electrophoretic patterns of membrane proteins of Mycoplasma, J. Bacteriol. 94:359–364.PubMedGoogle Scholar
  185. Rottem, S., Stein, O., and Razin, S., 1968, Reassembly of Mycoplasma membranes disaggregated by detergents, Arch. Biochem. Biophys. 125:46–56.PubMedCrossRefGoogle Scholar
  186. Ryter, A., 1968, Association of the nucleus and the membrane of bacteria: A morphological study, Bacteriol. Rev. 32:39–54.PubMedGoogle Scholar
  187. Ryter, A., and Jacob, F., 1966, Etude morphologique de la liaison du noyau à la membranechez E. coli et chez les protoplastes de B. subtilis, Ann. Inst. Pasteur 110:801–812.Google Scholar
  188. Ryter, A., and Kellenberger, E., 1958, Etude au microscope électronique de plasmas contenant de l’acide déoxyribonucléique, Z. Naturforsch. 13b:597–605.Google Scholar
  189. Ryter, A., Frehel, C., and Ferrandes, B., 1967, Comportement des mesosomes lors de l’attaque de Bacillus subtilis par le lysozyme en milieu hyper-ou hypotonique, Compt. Rend. 265:1259–1262.Google Scholar
  190. Salton, M. R. J., 1956, Bacterial cell walls, Symp. Soc. Gen. Microbial. 6:81–110.Google Scholar
  191. Salton, M. R. J., 1964, “The Bacterial Cell Wall,” XIII, 293 pp. Elsevier, Amsterdam.Google Scholar
  192. Salton, M. R. J., 1967a, Structure and function of bacterial cell membranes, Ann. Rev. Microbial. 21:417–442.CrossRefGoogle Scholar
  193. Salton, M. R. J., 19676, Isolation and characterization of bacterial membranes, Trans. N. Y. Acad. Sci. Ser. 1129:764–781.Google Scholar
  194. Salton, M. R. J., 1968a, Lytic agents, cell permeability and monolayer penetrability, J. Gen. Physiol. 52:227s-252s.CrossRefGoogle Scholar
  195. Salton, M. R. J., 1968b, Microbial cytology, Comprehensive Biochem. 23:127–153.Google Scholar
  196. Salton, M. R. J., 1968c, Isolation and characterization of bacterial membranes, in “Microbial Protoplasts, Spheroplasts, and L-Forms” (L. B. Guze, ed.), pp. 144–153, Williams and Wilkins, Baltimore.Google Scholar
  197. Salton, M. R. J., 1969,XXXX in “The Future of the Brain Sciences (S. Bogoch, ed.), p. 1, Plenum Press, New York.Google Scholar
  198. Salton, M. R. J., and Chapman, J. A., 1962, Isolation of the membrane-mesosome structures from Micrococcus lysodeikticus, J. Ultrastruct. Res. 6:489–498.PubMedCrossRefGoogle Scholar
  199. Salton, M. R. J., and Ehtishamuddin, A. F. M., 1965, The localization of cytochromes and carotenoids in isolated bacterial membranes and envelopes, Austral. J. Exp. Biol. Med. Sci. 43:255–264.CrossRefGoogle Scholar
  200. Salton, M. R. J., and Freer, J. H., 1965, Composition of the membranes isolated from several gram-positive bacteria, Biochim. Biophys. Acta 107:531–538.PubMedCrossRefGoogle Scholar
  201. Salton, M. R. J., and Nachbar, M. S., 1970, in “Autonomy and Biogenesis of Mitochondria and Chloroplasts, Symposium,” Canberra, Australia (in press).Google Scholar
  202. Salton, M. R. J., and Netschey, A., 1965, Physical chemistry of isolated bacterial membranes, Biochim. Biophys. Acta 107:539–545.PubMedCrossRefGoogle Scholar
  203. Salton, M. R. J., and Schmitt, M. D., 1967a, Effects of diphenylamine on carotenoids and menaquinones in bacterial membranes, Biochim. Biophys. Acta 135:196–207.CrossRefGoogle Scholar
  204. Salton, M. R. J., and Schmitt, M. D., 1967b, Separation of lipids from proteins and cell membranes by disc electrophoresis, Biochem. Biophys. Res. Commun. 27:529–534.CrossRefGoogle Scholar
  205. Salton, M. R. J., Schmitt, M. D., and Trefts, P. E., 1967, Fractionation of isolated bacterial membranes, Biochem. Biophys. Res. Commun. 29:728–773.PubMedCrossRefGoogle Scholar
  206. Salton, M. R. J., Freer, J. H., and Ellar, D. J., 1968, Electron transport components localized in a lipid-depleted sheet isolated from Micrococcus lysodeikticus membranes by deoxycholate extraction, Biochem. Biophys. Res. Commun. 33:909–915.PubMedCrossRefGoogle Scholar
  207. Schachman, H. K., Pardee, A. B., and Stainer, R. Y., 1952, Studies on the macromolecular organization of microbial cells, Arch. Biochem. Biophys. 38:245–260.PubMedCrossRefGoogle Scholar
  208. Scher, M., Lennarz, W. J., and Sweeley, C. C., 1968, The biosynthesis of mannosyl-lphosphorylpolyisoprenol in Micrococcus lysodeikticus and its role in mannan synthesis, Proc. Nat. Acad. Sci. 59:1313–1320.PubMedCrossRefGoogle Scholar
  209. Schlessinger, D., Marchesi, V. T., and Kwan, B. C. K., 1965, Binding of ribosomes to cytoplasmic reticulum of Bacillus megaterium, J. Bacteriol. 90:456–466.PubMedGoogle Scholar
  210. Schnaitman, C., and Greenawalt, J. W., 1966, Intracytoplasmic membranes in Escherichia coli, J. Bacterial. 92:780–783.Google Scholar
  211. Scholes, P. B., and Smith, L., 1968a, The isolation and properties of the cytoplasmic membrane of Micrococcus denitrificans,Biochim. Biophys. Acta 153:350–362.CrossRefGoogle Scholar
  212. Scholes, P. B., and Smith, L., 1968b, Composition and properties of the membrane-bound respiratory chain system of Micrococcus denitrificans,Biochim. Biophys. Acta. 153: 363–375.CrossRefGoogle Scholar
  213. Schubert, K., Rose, G., Wachtel, H., Hörhold, C., and Ikekawa, N., 1968, Zum Vorkommen von Sterinen in Bakterien, Europ. J. Biochem. 5:246–251.PubMedCrossRefGoogle Scholar
  214. Shaw, N., and Baddiley, J., 1968, Structure and distribution of glycosyl diglycerides in bacteria, Nature 217:142–144.CrossRefGoogle Scholar
  215. Shockman, G. D., Kolb, J. J., Bakay, B., Conover, M. J., and Toennies, B., 1963, Protoplast membrane of Streptococcus faecalis, J. Bacteriol. 85:168–176.PubMedGoogle Scholar
  216. Sjöstrand, F. S., 1967, Molecular structure and function of cellular membranes, Protides Biol. Fluids 15:15–36.Google Scholar
  217. Smith, P. F., and Mayberry, W. R., 1968, Identification of the major glycolipid from Mycoplasma sp., strain J as 3,4,6-triacyl-ß-o-glucopyranose, Biochemistry 7:2706–2710.PubMedCrossRefGoogle Scholar
  218. Smith, P. F., Koostra, W. L., and Mayberry, W. R., 1969, Observations on membranes of Mycoplasma laidlawii strain B, J. Bacteriol. 100:1166–1174.PubMedGoogle Scholar
  219. Stoeckenius, W., and Engelman, D. M.,1969, Current models for the structure of biological membranes, J. Cell Biol. 42:613–646.PubMedCrossRefGoogle Scholar
  220. Stoeckenius, W., and Kunau, W. H., 1968, Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes, J. Cell Biol. 38:337–357.CrossRefGoogle Scholar
  221. Stoeckenius, W., and Rowen, R., 1967, A morphological study of Halobacterium halobium and its lysis in media of low salt concentration, J. Cell Biol. 34:365–393.PubMedCrossRefGoogle Scholar
  222. Suganuma, A., 1966, Further studies on the plasma membrane of Staphylococcus aureus,J. Cell Biol. 30:208–210.PubMedCrossRefGoogle Scholar
  223. Terry, T. M., Engelman, D. M., and Morowitz, H. J., 1967, Characterization of the plasma membrane of Mycoplasma laidlawii,II. Modes of aggregation of solubilized membrane, Biochim. Biophys. Acta 135:391–405.PubMedCrossRefGoogle Scholar
  224. Tomasz, A., Jamieson, J. D., and Ottolenghi, E., 1964, The fine structure of Dipococcus pneumoniae,J. Cell Biol. 22:453–467.PubMedCrossRefGoogle Scholar
  225. Tornabene, T. G., Kates, M., Gelpi, E., and Oro, J., 1968, Occurrence of squalene, di-and tetrahydrosqualenes, and vitamin MKs in an extremely halophilic bacterium, Halo-bacterium cutirubrum, J. Lipid Res. 10:294–303.Google Scholar
  226. Tuttel, A. L., and Gest, H., 1959, Subcellular particulate systems and the photochemical apparatus of Rhodospirillum rubrum, Proc. Nat. Acad. Sci. 45:1261–1269.CrossRefGoogle Scholar
  227. Vambutas, V. K., and Salton, M. R. J., 1970a, Differential inhibitory effects of chloramphenicol on the synthesis of membrane ATPase and cytoplasmic enzymes of Micrococcus lysodeikticus, Biochim. Biophys. Acta 203:94–103.CrossRefGoogle Scholar
  228. Vambutas, V. K., and Salton, M. R. J., 1970b, Incorporation of (14C) glycine into Micrococcus lysodeikticus membrane protein and effects of protein synthesis inhibitors, Biochim. Biophys. Acta 203:83–93.CrossRefGoogle Scholar
  229. Iterson, W., 1961, Some features of a remarkable organelle in Bacillus subtilis,J. Biophys. Biochem. Cytol. 9:183–292.CrossRefGoogle Scholar
  230. Iterson, W., 1965, Symposium on the fine structure and replication of bacteria and their parts. II. Bacterial cytoplasm, Bacteriol. Rev. 29:299–325.PubMedGoogle Scholar
  231. Iterson, W., and Op den Kamp, J. A. F., 1969, Bacteria-shaped gymnoplasts (protoplasts) of Bacillus subtilis,J. Bacteriol. 99:304–315.PubMedGoogle Scholar
  232. Iterson, W., and Ruys, A. C., 1960, On the nature of P.P.L.O. II. Electron microscopy, Antonie van Leeuwenhoek 26:9–22.PubMedCrossRefGoogle Scholar
  233. Vatter, A. E., and Wolfe, R. S., 1958, The structure of photosynthetic bacteria, J. Bacteriol. 75:480–488.PubMedGoogle Scholar
  234. Vorbeck, M. L., and Marinetti, G. V., 1965, Intracellular distribution and characterization of the lipids of Streptococcus faecalis (ATCC 9790), Biochemistry 4:296–305.CrossRefGoogle Scholar
  235. Wallach, D. F. H., 1969, Membrane lipids and the conformations of membrane proteins, J. Gen. Physiol. 54:3s-26s.CrossRefGoogle Scholar
  236. Wallach, D. F. H., and Kamat, V. B., 1964, Plasma and cytoplasmic membrane fragments from Ehrlich ascites carcinoma, Proc. Nat. Acad. Sci. 52:721–728.PubMedCrossRefGoogle Scholar
  237. Weibull, C., 1953a, The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme, J. Bacteriol. 66:688–659.Google Scholar
  238. Weibull, C., 1953b, Characterization of the protoplasmic constituents of Bacillus megaterium,J. Bacteriol. 66:696–702.Google Scholar
  239. Weibull, C., 1965, Plasmolysis in Bacillus megaterium, J. Bacteriol. 89:1151–1154.PubMedGoogle Scholar
  240. Weidel W., and Pelzer, H., 1964, Bag shaped macromolecules — A new outlook on bacterial cell walls, Advan. Enzymol. 26:193–232.Google Scholar
  241. Weidel, W., Frank, H., and Martin, H. H., 1960, The rigid layer of the cell wall of Escherichia coli strain B, J. Gen. Microbiol. 22:158–166.PubMedGoogle Scholar
  242. Weinbaum, G., and Markman, R., 1966, A rapid technique for distinguishing enzymatically active proteins in the cell “envelope” of Escherichia coli B, Biochim. Biophys. Acta 124: 207–209.PubMedCrossRefGoogle Scholar
  243. White, D. C., 1963, Respiratory sytems in the hemin-requiring Haemophilus species, J. Bacteriol. 85:84–96.PubMedGoogle Scholar
  244. White, D. C., 1965a, Synthesis of 2-dimethyl vitamin K2 and the cytochrome system in Haemophilus, J. Bacteriol. 89:299–305.Google Scholar
  245. White, D. C., 1965b, The function of 2-dimethyl vitamin K2 in the electron transport system of Haemophilus parainfluenzae,J. Biol. Chem. 240:1387–1394.Google Scholar
  246. White, D. C., 1967, Effect of glucose on the formation of the membrane-bound electron transport system in Haemophilus parainfluenzae, J. Bacteriol. 93:567–573.PubMedGoogle Scholar
  247. Wilson, O. H., and Holden, J. T., 1969, Stimulation of arginine transport in osmotically shocked Escherichia coli W cells by purified arginine-binding protein fractions, J. Biol. Chem. 244:2743–2749.PubMedGoogle Scholar
  248. Wright, A., Dankert, M., Fennessey, P., and Robbins, P. W., 1967, Characterization of a polyisoprenoid compound functional in 0-antigen biosynthesis, Proc. Nat. Acad. Sci 57:1798–1803.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Milton R. J. Salton
    • 1
  1. 1.Department of MicrobiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations