Advertisement

Measurement and Applications of Fluorescence Lifetimes in the Nanosecond Range Using the Time Correlated Single Photon Technique

  • L. A. Shaver
  • L. J. Cline Love
Part of the Progress in Analytical Chemistry book series (PAC)

Abstract

The time correlated single photon (TCSP) technique is more commonly known as the “single photon counting” method, a term that has led to confusion with conventional photon counting detection. Both are spectroscopic detection methods but they differ greatly in principle, instrumentation, and application. Perhaps the distinction between the two techniques will be served by first briefly describing photon counting. Photon counting is an instrumental technique for measuring low levels of light or particle beam densities (1–5). Individual photons incident on a photomultiplier tube (PMT) create discrete pulses or bursts of electrons arriving at the anode at a rate directly proportional to the photon flux. The instrumentation is relatively straightforward. The current pulse from the PMT anode is converted to a voltage, amplified, and sent to a pulse height discriminator. Only those pulses within preset voltage limits are passed on to a counter. Advantages of photon counting include: 1) the signal-to-noise (S/N) ratio is enhanced compared to the DC current measurement method, 2) the data are in digital form, 3) the sensitivity is greater at low light levels, 4) the measurements may be integrated over long periods of time resulting in higher precision and accuracy(2).

Keywords

Decay Curve Fluorescence Lifetime Excitation Pulse Decay Lifetime Time Correlate Single Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.L. Franklin, G. Horlick,and H.V. Malmstadt, Anal.Chem., 41, 2 (1969).CrossRefGoogle Scholar
  2. 2.
    H.V. Malmstadt, M.L. Franklin, and G. Horlick, Anal.Chem., 44, No. 8, 63A (1972).Google Scholar
  3. 3.
    G.A. Morton, App. Opt., 7, 1 (1968).CrossRefGoogle Scholar
  4. 4.
    ORTEC., Inc., Bulletin on Model 5C1 Photon Counting System, Oak Ridge, TN. (1973).Google Scholar
  5. 5.
    M.R. Zatzick, SSR Instruments Co., Applications Note 71021, Santa Monica, Ca.Google Scholar
  6. 6.
    S.A. Miller, Rev. Sci. Instrum., 39, 1923 (1968).CrossRefGoogle Scholar
  7. 7.
    D.O. Cooke, R.M. Dagnall, B.L. Sharp, and T.S. West, Spectros. Lett., 4, 91 (1971).CrossRefGoogle Scholar
  8. 8.
    M.K. Murphy, S.A. Clyborn, and C. Veillon, Anal. Chem., 45, 1468 (1973).CrossRefGoogle Scholar
  9. 9.
    M.R. Zatzick, Research/Development, Nov. 1970.Google Scholar
  10. 10.
    J.B. Birks and I.H. Munro, “Progress in Reaction Kinetics”, G. Porter, ed., Pergamon Press, New York, 1967, Vol. 4, Chapter 7.Google Scholar
  11. 11.
    W.R. Ware, Office of Naval Research, Contract N00014-67-A-0113-0006, Technical Report No. 3 (1969).Google Scholar
  12. 12.
    W.R. Ware, “Creation and Detection of the Excited State”, A.A. Lamola, ed., Marcel Dekker, Inc., New York, 1971, Vol. 1, Part A, Chapter 5.Google Scholar
  13. 13.
    ORTEC., Inc., Application Note AN 35, Oak Ridge, TN. (1971); ORTEC., Inc., Life Science Notes, No. 1, Oak Ridge, TN. (1974); ORTEC., Inc., 9200 nanosecond Fluorescence Spectrometer Descriptive Literature, Oak Ridge, TN. (1972).Google Scholar
  14. 14.
    A.E.W. Knight and B.K. Selinger, Aust. J. Chem., 26, 1 (1973).CrossRefGoogle Scholar
  15. 15.
    L.J. Cline Love and L.A. Shaver, Anal. Chem., 48, No.4, A pages (1976).Google Scholar
  16. 16.
    J. Yguerabide, “Methods in Enzymology”, S.P. Colowick and N.D. Kaplan, eds., Academic Press, New York, 1972, Vol. 26, Part C.Google Scholar
  17. 17.
    J.N. Demas and G.A. Crosby, Anal. Chem., 42, 1010 (1970).CrossRefGoogle Scholar
  18. 18.
    L. Hundley, T. Coburn, E. Garwin, and L. Stryer, Rev.Sci. Instrum., 38, 488 (1967).CrossRefGoogle Scholar
  19. 19.
    L.M. Bollinger and G.E. Thomas, Rev. Sci. Instrum., 32, 1044 (1961).CrossRefGoogle Scholar
  20. 20.
    Y. Koechlin, Ph.D. Thesis, University of Paris, 1961.Google Scholar
  21. 21.
    Y. Koechlin, C.R. Acad. Sci., (Paris), 252, 391 (1961).Google Scholar
  22. 22.
    P.B. Coates, J. Phys. E., 5, 148 (1971).CrossRefGoogle Scholar
  23. 23.
    C.C. Davis and T.A. King, Rev. Sci. Instrum., 41, 407 (1970).CrossRefGoogle Scholar
  24. 24.
    D.E. Donohue and R.C. Stern, Rev. Sci. Instrum., 43, 791 (1972).CrossRefGoogle Scholar
  25. 25.
    H.E. Zimmerman, K.S. Kamm, and D.P. Wertheman, J. Amer. Chem. Soc, 97, 3718 (1975).CrossRefGoogle Scholar
  26. 26.
    A.E.W. Knight and B.K. Selinger, Spectrochim. Acta, 27A, 1223 (1971).Google Scholar
  27. 27.
    L.A. Shaver and L.J. Cline Love, Unpublished data, 1975.Google Scholar
  28. 28.
    J. Zynger and S.R. Crouch, App. Spectros., 26, 631 (1972).CrossRefGoogle Scholar
  29. 29.
    F.E. Lytle and M.S. Kelsey, Anal. Chem., 46, 855 (1974).CrossRefGoogle Scholar
  30. 30.
    E.F. Wyner, J.A. Sousa, and J.F. Roach, Spectros. Lett. 8, 419 (1975).CrossRefGoogle Scholar
  31. 31.
    P.M. Rentzepis and C.J. Mitschele, Anal. Chem., 42, (No. 14), 21A (1970).Google Scholar
  32. 32.
    V.H. Kollman, S.L. Shapiro, and A.J. Campillo, Biochem. Biophys. Res. Commun., 63, 917 (1975).CrossRefGoogle Scholar
  33. 33.
    D.J. Bradley, Contemp. Phys., 16, 263 (1975).CrossRefGoogle Scholar
  34. 34.
    V.V. Arsen’ev, V.A. Gavanin, V.Z. Pashchenko, S.P. Protasov, L.B. Rubin, and A.B. Rubin, J. Appl. Spectros., 18, 801 (1973).CrossRefGoogle Scholar
  35. 35.
    W.M. Watson, Y. Wang, J.T. Yardley, and G.D. Stucky, Inorg. Chem., 14, 2374 (1975).CrossRefGoogle Scholar
  36. 36.
    H.E. Zimmerman, D.P. Werthemann, and K.S. Kamm, J. Amer. Chem. Soc, 96, 439 (1974).CrossRefGoogle Scholar
  37. 37.
    C. Lewis, W.R. Ware, L.J. Doemeny, and T.L. Nemzek, Rev. Sci. Instrum., 44, 107 (1973).CrossRefGoogle Scholar
  38. 38.
    R.F. Chen, Anal. Biochem., 57, 593 (1974).CrossRefGoogle Scholar
  39. 39.
    L.A. Shaver and L.J. Cline Love, Appl. Spectros., 29, 485 (1975).CrossRefGoogle Scholar
  40. 40.
    I. Isenberg and R.D. Dyson, Biophys. J., 9, 1337 (1969).CrossRefGoogle Scholar
  41. 41.
    R.D. Dyson and I. Isenberg, Biochem., 10, 3233 (1971).CrossRefGoogle Scholar
  42. 42.
    I. Isenberg, R.D. Dyson, and R. Hanson, Biophys. J., 13, 1090 (1973).CrossRefGoogle Scholar
  43. 43.
    I. Isenberg, J. Chem. Phys., 59, 5696 (1973).CrossRefGoogle Scholar
  44. 44.
    I. Isenberg, J. Chem. Phys., 59, 5708 (1973).CrossRefGoogle Scholar
  45. 45.
    A. Gafni, R.L. Modlin, and L. Brand, Biophys. J., 15, 263 (1975).CrossRefGoogle Scholar
  46. 46.
    J. Schlesinger, Nucl. Instrum. Methods, 106, 503 (1973).CrossRefGoogle Scholar
  47. 47.
    B. Valeuer and J. Moirez, J. Chim. Phys., 70, 500 (1973).Google Scholar
  48. 48.
    A. Grinvald and I.Z. Steinberg, Anal. Biochem., 59, 583 (1974).CrossRefGoogle Scholar
  49. 49.
    W.R. Ware, L.J. Doemeny, and T.L. Nemzek, J. Phys. Chem., 77, 2038 (1973).CrossRefGoogle Scholar
  50. 50.
    H.E. Zimmerman and T.P. Cutler, Chem. Commun., 1975, 598 (1975).Google Scholar
  51. 51.
    R.F. Chen, Fluorescence News, 8, 29 (1974), American Instrument Co., Silver Spring, Md.Google Scholar
  52. 52.
    W. Weissler, Anal. Chem., 46, 500R (1974).CrossRefGoogle Scholar
  53. 53.
    R.B. Cundall and T.F. Palmer, “Annual Reports on the Progress of Chemistry”, The Chemical Society, London, 1973, Vol. 70, Section A. Chapter 3.Google Scholar
  54. 54.
    G. Weber, Ann. Rev. Biophys. Bioeng., 1, 553 (1972).CrossRefGoogle Scholar
  55. 55.
    R. Rigler and M. Ehrenberg, Quart. Rev. Biophys., 6, 139 (1973).CrossRefGoogle Scholar
  56. 56.
    A. Azzi, Quart. Rev. Biophys., 8, 237 (1975).CrossRefGoogle Scholar
  57. 57.
    T. Tao, Biopolymers, 8, 609 (1969).CrossRefGoogle Scholar
  58. 58.
    L. Stryer, Science, 162, 526 (1968).CrossRefGoogle Scholar
  59. 59.
    L.C. Cantley, Jr. and G.G. Hammes, Biochem., 14, 2976 (1975).CrossRefGoogle Scholar
  60. 60.
    S. Matsumoto and G.G. Hammes, Biochem., 14, 214 (1975).CrossRefGoogle Scholar
  61. 61.
    M.S. Tung and R.F. Steiner, Biochem. Biophys. Res. Commun., 57, 876 (1974).CrossRefGoogle Scholar
  62. 62.
    M.S. Tung and R.F. Steiner, Bipolymers, 14, 1933 (1975).CrossRefGoogle Scholar
  63. 63.
    D. Genest, Ph. Wahl, and J.C. Auchat, Biophys. Chem., 1, 266 (1974).CrossRefGoogle Scholar
  64. 64.
    J.L. Tichadon, D. Genest, Ph. Wahl, and G. Aubel-Sadron, Biophys. Chem., 3, 142 (1975).CrossRefGoogle Scholar
  65. 65.
    F. Conti, Ann. Rev. Biophys. Bioeng., 4, 287 (1975).CrossRefGoogle Scholar
  66. 66.
    E.D. Cehelnik, R.B. Cundell, J.R. Lockwood, and T.F. Palmer, J. Chem. Soc., Faraday Trans. II, 70, 244 (1974).CrossRefGoogle Scholar
  67. 67.
    S.S. Lehrer, Biochem., 10, 3254 (1971).CrossRefGoogle Scholar
  68. 68.
    H.E. Zimmerman, D.P. Werthemann, and K.S. Kamm, J. Amer. Chem. Soc., 95, 5094 (1973).CrossRefGoogle Scholar
  69. 69.
    G.L. Loper and E.K.C. Lee, J. Chem. Phys., 63, 3779 (1975).CrossRefGoogle Scholar
  70. 70.
    M. Seibert, R.R. Alfano, and S.L. Shapiro, Biochem. Biophys. Acta, 292, 493 (1973).CrossRefGoogle Scholar
  71. 71.
    T.L. Nemzek and W.R. Ware, J. Chem. Phys., 62, 477 (1975).CrossRefGoogle Scholar
  72. 72.
    M.R. Locken, J.W. Hayes, J.R. Gohlke, and L. Brand, Biochem., 11, 4779 (1972).CrossRefGoogle Scholar
  73. 73.
    A. Grinvald and I.Z. Steinberg, Biochem., 13, 5170Google Scholar
  74. 74.
    J.E. Churchich, T. Beeler, and K. Ja Oh, J. Biological Chem., 250, 7722 (1975).Google Scholar
  75. 75.
    D.A. Hanson and E.K.C. Lee, J. Chem. Phys., 62, 183 (1975).CrossRefGoogle Scholar
  76. 76.
    D.A. Hanson and E.K.C. Lee, J. Chem. Phys., 63, 3272 (1975).CrossRefGoogle Scholar
  77. 77.
    G.L. Loper and E.K.C. Lee, Chem. Phys. Lett., 13, 140 (1972).CrossRefGoogle Scholar
  78. 78.
    J.L. Marx, Science, 188, 1002 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • L. A. Shaver
    • 1
  • L. J. Cline Love
    • 1
  1. 1.Department of ChemistrySeton Hall UniversitySouth OrangeUSA

Personalised recommendations