Analytical Applications of a New Spectroscopic Tool: Oherent Anti-Stokes Raman Spectroscopy (CARS)

  • A. B. Harvey
  • J. R. McDonald
  • W. M. Tolles
Part of the Progress in Analytical Chemistry book series (PAC)


Conventional, spontaneous Raman spectroscopy has been an extremely useful technique for analytical applications (1–5). It is used for both qualitative and quantitative analysis in cases which complement infrared methods. For example, homonuclear diatomic molecules, H2 D2, O2 N2, Cl2, etc. cannot be detected by infrared spectroscopy. Moreover, certain “symmetrical” vibrational modes are often only weakly allowed in the infrared spectrum, but such vibrations are frequently very intense in the Raman effect. An example is the vibrational spectrum of Thiokol rubber (6). The ir spectrum of this material shows the presence of C-O-C linkage but no indication of C-S or S-S bonds. The Raman spectrum exhibits no suggestion of ether-like moieties but very strongly displays the intense C-S and S-S vibrations. Hence, both spectra are necessary to identify the material. Raman spectroscopy has certain advantages over infrared spectroscopy, especially with respect to sample handling. With Raman spectroscopy, one can obtain results from samples in sealed tubes, whereas careful sample preparation is often required for infrared spectroscopy. Raman spectra of aqueous solutions are much easier to obtain since Raman scattering in water is relatively weak, whereas infrared absorption in water is nearly ubiquitous. Thus, Raman spectroscopy is a potent tool for the bio-related sciences. Raman spectroscopy is also becoming a very useful technique as a diagnostic tool for combustion and aerodynamic applications (7–12).


Raman Spectroscopy Probe Beam Raman Effect Optic Comm Cars Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. A. Szymanski, Ed., “Raman Spectroscopy,” Plenum Press, New York (1967 and 1970), Vols. I and II.Google Scholar
  2. 2.
    A. Anderson, Ed., “The Raman Effect,” Vol. 1, M. Dekker, Inc., New York (1971).Google Scholar
  3. 3.
    J. A. Konigstein, “Introduction to the Theory of the Raman Effect,” (D. Reidel Publishing Co., Dordrecht, Holland, 1972).CrossRefGoogle Scholar
  4. 4.
    G. Herzberg, “Molecular Spectra and Structure II — Infrared and Raman Spectra of Polyatomic Molecules,” (D. Van Nostrand, Inc., Prince, N. J., 1945).Google Scholar
  5. 5.
    F. R. Dollish, W. G. Fateley, F. F. Bentley, “Characteristic Raman Frequencies of Organic Compounds,” (John Wiley and Sons, New York, 1974).Google Scholar
  6. 6.
    D. S. Cain and A. B. Harvey, Dev. in Appl. Spectr. 7B, 94 (1970).Google Scholar
  7. 7.
    M. Lapp and C. M. Penney, Eds., “Laser Raman Gas Diagnostics,” Plenum Press, New York (1974).Google Scholar
  8. 8.
    A. A. Boiarski, “Shock-Tube Diagnostics Utilizing Laser Raman Spectroscopy,” NSWC/WOL/TR 75-53, White Oak Lab. (1975).Google Scholar
  9. 9.
    J. J. Barrett and A. B. Harvey, J. Opt. Soc. Am. 65, 392 (1975).CrossRefGoogle Scholar
  10. 10.
    S. Lederman, M. H. Bloom, J. Bornstein, and P. K. Khosla, Int. J. Heat Mass Transfer 17, 1479 (1974).CrossRefGoogle Scholar
  11. 11.
    M. E. Hillard, Jr., M. L. Emory, and A. R. Bandy, AIAA J. 11, 775 (1973).CrossRefGoogle Scholar
  12. 12.
    M. Lapp, C. M. Penney, and J. A. Asher, “Application of Light-scattering Techniques for Measurements of Density, Temperature, and Velocity in Gasdynamics,” ARL 73-0045, Wright-Patterson AFB, Ohio (1973).Google Scholar
  13. 13.
    R. W. Terhune, Bull. Amer. Phys. Soc. 8, 359 (1963).Google Scholar
  14. 14.
    P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).CrossRefGoogle Scholar
  15. 15.
    J. J. Wynne, Phys. Rev. Lett. 29, 650 (1972).CrossRefGoogle Scholar
  16. 16.
    F. DeMartini, G. P. Giuliani and E. Santamo, Optics Coram. 5, 126 (1972).CrossRefGoogle Scholar
  17. 17.
    F. DeMartini, F. Simoni and E. Santamo, Optics Comm. 9,176 (1973).CrossRefGoogle Scholar
  18. 18.
    F. Capasso and F. DeMartini, Optics Comm. 9, 172 (1973).CrossRefGoogle Scholar
  19. 19.
    R. W. Terhune and P. D. Maker, “Lasers,” (A. K. Levin, Ed., Marcel Dekker, Inc., New York, 1968, Vol. II p. 295).Google Scholar
  20. 20.
    S. D. Kramer, F. G. Parsons, and N. Bloembergen, Phys. Rev. B, 9, 1853 (1974).CrossRefGoogle Scholar
  21. 21.
    M. D. Levenson, IEEE J. Quantum Electron. QE-10. 110 (1974).CrossRefGoogle Scholar
  22. 22.
    C. Flytzanis, “Theory of Optical Nonlinear Susceptibilities,” Tech. Report 638, Harvard Univ. (1973).Google Scholar
  23. 23.
    M. D. Levenson and N. Bloembergen, J. Chem. Phys. 60, 1323 (1974).CrossRefGoogle Scholar
  24. 24.
    M. D. Levenson and N. Bloembergen, Phys. Rev. B, 10, 4447 (1974).CrossRefGoogle Scholar
  25. 25.
    M. D. Levenson, C. Flytzanis and N. Bloembergen, Phys. Rev. B, 6, 3962 (1972).CrossRefGoogle Scholar
  26. 26.
    A. Nabara and K. Kubota, Jap. J. Appl. Phys. 6, 1105 (1967).CrossRefGoogle Scholar
  27. 27.
    W. G. Rado, Appl. Phys. Lett. 11, 123 (1967).CrossRefGoogle Scholar
  28. 28.
    J. Lukasik and J. Ducuing, Phys. Rev. Lett. 28, 1155 (1972).CrossRefGoogle Scholar
  29. 29.
    F. DeMartini and J. Ducuing, Phys. Rev. Lett. l7, 167 (1966).Google Scholar
  30. 30.
    J. J. Barrett and R. F. Begley, Appl. Phys. Lett. 27, 129 (1975).CrossRefGoogle Scholar
  31. 31.
    R. F. Begley, A. B. Harvey and R. L. Byer, Appl. Phys. Lett. 25, 387 (1974).CrossRefGoogle Scholar
  32. 32.
    R. F. Begley, A. B. Harvey; R. L. Byer and B. S. Hudson, J. Chem. Phys. 6l, 2466 (1974).CrossRefGoogle Scholar
  33. 33.
    R. F. Begley, A. B. Harvey, R. L. Byer and B. S. Hudson, American Laboratory 6, 11 (1974).Google Scholar
  34. 34.
    S. E. Harris and B. S. Hudson, “(CARS) Coherent Anti-Stokes Raman Spectroscopy,” Chromatix Application Note 6 (1975).Google Scholar
  35. 35.
    “Coherent Anti-Stokes Raman Spectroscopy (CARS),” Molectron Corp., Applications Note III.Google Scholar
  36. 36.
    B. Hudson, J. Chem. Phys. 6l, 546l (1974).Google Scholar
  37. 37.
    I. Itzkan and D. A. Leonard, Appl. Phys. Lett. 26, 106 (1975).CrossRefGoogle Scholar
  38. 38.
    J. E. Moore and L. M. Fraas, Anal. Chem. 45, 2009 (1973).CrossRefGoogle Scholar
  39. 39.
    F. Moya, S. A. J. Duret and J. P. E. Taran, Optics Comm. 13, 169 (1975)CrossRefGoogle Scholar
  40. 4O. P. Regnier, “Application of Coherent Anti-Stokes Raman Scattering to Gas Concentration Measurements and to Flow Visualization,” Office National D’Etudes Et De Recherches Aerospatiales, 215 (1973).Google Scholar
  41. 41.
    P. R. Regnier and J. P. E. Taran, Appl. Phys. Lett. 23, 240 (1973).CrossRefGoogle Scholar
  42. 42.
    P. R. Regnier, F. Moya and J. P. E. Taran, AIAA J. 12, 826 (1974).CrossRefGoogle Scholar
  43. 43.
    P. R. Regnier and J. P. E. Taran, “Laser Raman Gas Diagnostics,” edited by M. Lapp and C. M. Penney (Plenum Press, Inc., New York, 1974, p. 87).Google Scholar
  44. 44.
    P. Lallemand, “The Raman Effect,” (A. Anderson, Ed., Marcel Dekker, Inc., New York, 1971, Vol. I, p. 287).Google Scholar
  45. 45.
    D. L. Jeanmaire, M. R. Suchanski and R. P. Van Duyne, J. Am. Chem. Soc. 97, 1699 (1975) and subsequent articles in this series.CrossRefGoogle Scholar
  46. 46.
    W. Kieter and H. J. Bernstein, Mol. Phys. 23, 835 (1972).CrossRefGoogle Scholar
  47. 47.
    W. Holzer, W. F. Murphy and H. J. Bernstein, J. Chem. Phys. 52, 399 (1970).CrossRefGoogle Scholar
  48. 48.
    W. J. Jones and B. P. Stoicheff, Phys. Rev. Lett. 13, 657 (1964).CrossRefGoogle Scholar
  49. 49.
    P. Gadow, A. Lau, C. T. Thuy, H. J. Weigmann, W. Werncke, K. Lenz and M. Pfeiffer, Optics Comm. 4, 226 (1971).CrossRefGoogle Scholar
  50. 50.
    J. Klein, W. Werncke, A. Lau, G. Hunsalz and K. Lenz, Experimentelle Technik Der Physik 22, 565 (1974).Google Scholar
  51. 51.
    K. Kneipp, W. Werncke, H. E. Ponath, J. Klein, A. Lau and C. D. Thuy, Phys. Stat. Sol. 64, 589 (1974).CrossRefGoogle Scholar
  52. 52.
    A. Lau, M. Pfeiffer, P. Gadow, W. Werncke, K. Lenz and H. J. Weigmann, Optics Comm. 4, 228 (1971).CrossRefGoogle Scholar
  53. 53.
    C. D. Thuy, W. Werncke, A. Lau and K. Lenz, Experimentelle Technik Der Physik 22, 111 (1974).Google Scholar
  54. 54.
    W. Werncke, J. Klein, A. Lau, K. Lenz and G. Hunsalz, Optics Comm. 11, 159 (1974).CrossRefGoogle Scholar
  55. 55.
    E. S. Yeung, J. Mol. Spectroscopy 53, 379 (1974).CrossRefGoogle Scholar
  56. 56.
    J. F. Verdieck, S. H. Peterson, C. M. Savage and P. D. Maker, Chem. Phys. Lett. 7, 219 (1970).CrossRefGoogle Scholar
  57. 57.
    D. Heiman, R. W. Hellwarth, D. M. Levenson and G. Martin, Phys. Rev. Lett., in press.Google Scholar
  58. 58.
    R. DeWitt, W. M. Tolles and A. B. Harvey, NRL Memorandum Report, in preparation.Google Scholar
  59. 59.
    G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).CrossRefGoogle Scholar
  60. 60.
    G. C. Bjorklund, Bell Lab., TM 74-1313-23 (1974).Google Scholar
  61. 61.
    J. W. Nibler, et al., unpublished results.Google Scholar
  62. 62.
    I. Chabay, G. K. Klauminzer and B. S. Hudson, Appl. Phys. Lett. 28, 27 (1976).CrossRefGoogle Scholar
  63. 63.
    B. S. Hudson, W. Heatherington, S. Cramer, I. Chabay and G. Klauminzer, Proc. Nat’l. Acad. of Sciences, to be published.Google Scholar
  64. 64.
    R. Wallenstein and T. W. Hansch, Optics Comm. 14, 353 (1975).CrossRefGoogle Scholar
  65. 65.
    R. T. Lynch, Jr., S. D. Kramer, H. Lotem and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Optics Coram., in press.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • A. B. Harvey
    • 1
  • J. R. McDonald
    • 1
  • W. M. Tolles
    • 1
    • 2
  1. 1.Physical Chemistry Branch (Code 6110)Naval Research LaboratoryUSA
  2. 2.Dept. of Chemistry and PhysicsNaval Postgraduate SchoolMontereyUSA

Personalised recommendations