Advertisement

Applications of X-Ray Diffraction in Occupational Health Studies

  • Charles M. Nenadic
  • John V. Crable
Part of the Progress in Analytical Chemistry book series (PAC, volume 176)

Abstract

The Occupational Safety and Health Act of 19701 was promulgated for the express purpose of providing American workers with protection against personal injury and illness resulting from hazardous working conditions.

Keywords

Coal Dust Chrysotile Asbestos Hydrated Magnesium Silicate Direct Comparison Method Talc Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Public Law 91–596, 84 Stat. 1590, U. S. Code Title 29, Sec. 655Google Scholar
  2. 2.
    Occupational Safety and Health Act of 1970, Section 6 (a), 84 Stat. 1593Google Scholar
  3. 3.
    Occupational Safety and Health Act of 1970, Section 22, 84 Stat. 1612Google Scholar
  4. 4.
    Bragg, R. H.: Quantitative Analysis by Powder Diffraction. In Handbook of X-Rays ( E. F. Kaelble, ed.), McGraw-Hill Book Co., New York (1967)Google Scholar
  5. 5.
    Gordon, R. L., and G. W. Harris: Effect of Particle-Size on the Quantitative Determination of Quartz by X-Ray Diffraction. Nature 175: 1135 (1955)CrossRefGoogle Scholar
  6. 6.
    Williams, P. P.: Direct Quantitative Diffractometric Analysis. Anal. Chem. 31: 1842 (1959).CrossRefGoogle Scholar
  7. 7.
    Crable, J. V., and M. J. Knott: Application of X-Ray Diffraction to the Determination of Chrysotile in Bulk or Settled Dust Samples. Amer. Ind. Hyg. Assoc. J. 27: 383 (1966)CrossRefGoogle Scholar
  8. 8.
    Crable, J. V., and M. J. Knott: Quantitative X-Ray Diffraction Analysis of Crocidolite and Amosite in Bulk or Settled Dust Samples. Amer. Ind. Hyg. Assoc. J. 27: 449 (1966).CrossRefGoogle Scholar
  9. 9.
    Leroux, J., and C. Powers: Direct X-Ray Diffraction Quantitative Analysis of Quartz in Industrial Dust Films Deposited on Silver Membrane Filters. Occup. Health Res. 21: 26 (1970).Google Scholar
  10. 10.
    Till, R., and D. Spears: The Determination of Quartz in Sedimentary Rocks Using an X-Ray Diffraction Method. Clays Clay Minerals 17: 323 (1969).CrossRefGoogle Scholar
  11. 11.
    Leroux, J.: Preparation of Thin Dust Coatings for Their Analysis by X-Ray Emission and Diffraction. Occup. Health Rev. 21: 19 (1970).Google Scholar
  12. 12.
    Aoyagi, K.: Mineralogical Study of Sedimentary Rocks in the Oil Fields of Japan by the X-ray Diffraction Method, and Its Application to Petroleum Geology. Clay Sci. 3: 37 (1967).Google Scholar
  13. 13.
    Hayashi, H., and K. Oinuma: Rapid Method of Quantitative Mineralogical Analysis of the Silica Minerals from the Lungs of the Refractory Workers. Inc. Health 2: 172 (1964).CrossRefGoogle Scholar
  14. 14.
    Quakernaat, J.: Direct Diffractometric Quantitative Analysis of Synthetic Clay Mineral Mixtures with Molybdenite as Orientation-Indicator. J. Sediment. Petrol. 40: 506 (1970).Google Scholar
  15. 15.
    Talvitie, N. A., and L. W. Brewer: X-Ray Diffraction Analysis of Industrial Dust. Amer. Ind. Hyg. Assoc. J. 23: 214 (1962).CrossRefGoogle Scholar
  16. 16.
    Matsumura, Y., and A. Hamada: Change of Surface Properties of Quartz Particles by Grinding. Ind. Health 6: 220 (1968).CrossRefGoogle Scholar
  17. 17.
    Brindley, G. W., and S. Udagawa: Sources of Error in the X-Ray Determination of Quartz, J. Amer. Ceram. Soc. 24: 643 (1959).CrossRefGoogle Scholar
  18. 18.
    Gordon, R. L., and G. W. Harris: Effect of Particle Size on the Quantitative Determination of Quartz by X-Ray Diffraction. Nature 175: 1135 (1955).CrossRefGoogle Scholar
  19. 19.
    Foster, P. K., I. R. Hughes, and K. McKenzie: X-Ray Diffraction and Thermal Expansion Properties of Cristobalite-Containing Ceramics. New Zealand J. Sci. 9: 249 (1966).Google Scholar
  20. 20.
    Brindley, G. W., and S. S. Kurtossy: Quantitative Determination of Kaolinite by X-Ray Diffraction. Am. Mineralogist 46: 1205 (1961).Google Scholar
  21. 21.
    DeWolff, P. M., J. M. Taylor, and W. Parrish: Experimental Study of Effect of Crystallite Size Statistics on X-Ray Diffraction Intensities. J. Appl. Phys. 30: 63 (1959).CrossRefGoogle Scholar
  22. 22.
    Schliephake, R. W.: Procedure for the Routine X-Ray Determination of quartz in Mine Dusts from Bituminous Coal Mines. Gluckauf 99: 79 (1963)Google Scholar
  23. 23.
    Crable, J. V.: Quantitative Determination of Chrysotile, Amosite, and Crocidolite by X-Ray Diffraction. Amer. Ind. Hyg. Assoc. J. 27: 293 (1966)CrossRefGoogle Scholar
  24. 24.
    Crouby, M. T. and P. S. Hamer: The Determination of Quartz on Personal Sampler Filters by X-Ray Diffraction. Ann. Occup. Hyg. 14: 65 (1971).Google Scholar
  25. 25.
    Richards, A. L.: Estimation of Trace Amounts of Chrysotile Asbestos by X-Ray Diffraction. Anal. Chem. 44: 1872 (1972).CrossRefGoogle Scholar
  26. 26.
    Joint Committee on Powder Diffraction Standards: Powder Diffraction File. 1845 Walnut Street, Philadelphia, Pa. 19103Google Scholar
  27. 27.
    Hayashi, H.: Procedure of Mineral Analysis of Dusts in the Lung by X-Ray and Infrared Studies. Ind. Health 1: 37 (1964).CrossRefGoogle Scholar
  28. 28.
    Brindley, G. W.: X-Ray Identification and Crystal Structures of Clay Minerals, The Mineralogical Society, London (1961).Google Scholar
  29. 29.
    Kaelble, E. F.: Qualitative Analysis by Powder Diffraction. In Handbook of X-Rays ( E. F. Kaelble, ed.), McGraw-Hill Book Co., New York (1967).Google Scholar
  30. 30.
    Klug, H. P., and L. E. Alexander: X-Ray Diffraction Procedures, John Wiley and Sons, New York (1954).Google Scholar
  31. 31.
    Leroux, J., D. H. Lennox, and K. Kay: Direct Quantitative X-Ray Analysis. Anal. Chem. 25: 741 (1953).CrossRefGoogle Scholar
  32. 32.
    Moore, C. A.: Quantitative Analysis of Naturally Occurring Multicomponent Mineral Systems by X-Ray Diffraction. Clays Clay Minerals 16: 325 (1968).CrossRefGoogle Scholar
  33. 33.
    Karlak, R. F., and D. S. Burnett: Quantitative Phase Analysis by X-Ray Diffraction. Anal. Chem. 38: 1741 (1966)CrossRefGoogle Scholar
  34. 34.
    Standard Method No. 6. U. S. Bureau of Mines, Pittsburgh, Pennsylvania.Google Scholar
  35. 35.
    Bergin, P.: Quantitative Diffraction Analysis of X-Ray Transparent Specimens. J. Sci. Instr. 41: 558 (1964)CrossRefGoogle Scholar
  36. 36.
    Talvitie, N. A., and L. W. Brewer: Separation and Analysis of Dust in Lung Tissue. Amer. Ind. Hyg. Assoc. J. 23: 58 (1962).Google Scholar
  37. 37.
    Bradley, A. A.: The Determination of Quartz in Small Samples by an X-Ray Technique. J. Sci. Instr. 44: 287 (1967).CrossRefGoogle Scholar
  38. 38.
    Cullity, B. D.: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Reading, Massachusetts (1956).Google Scholar
  39. 39.
    Standard Method No. 1. U. S. Bureau of Mines, Pittsburgh, Pennsylvania.Google Scholar
  40. 40.
    Oberg, M.: Evaluation of Quartz in Airborne Dust in the 0.5- to 2-Micron Size Range. Environ. Sci. Technol. 2: 795 (1968).Google Scholar
  41. 41.
    Mossman, M. H., D. H. Freas, and S. W. Bailey: Orienting Internal Standard Method for Clay Mineral X-Ray Analysis. Clays Clay Minerals 27: 441 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Charles M. Nenadic
    • 1
  • John V. Crable
    • 1
  1. 1.National Institute for Occupational Safety and HealthDHEWCincinnatiUSA

Personalised recommendations