Factors Affecting the Reproducibility in Pyrolysis Gas Chromatography (PGC)

  • Clarence J. Wolf
  • Ram L. Levy
Part of the Progress in Analytical Chemistry book series (PAC, volume 176)


The achievement of interlaboratory reproducibility in PGC, similar to that of IR, MS and NMR, will open new possibilities for analysis and greatly expand PGC’s utility. Normalized pyrograms obtained under standard conditions could be compiled and used as reference spectra. The accumulation of compiled reference data will permit the deduction of modes of thermal fragmentation which, in turn, could be used for interpretation of new pyrograms not listed in the compiled data. To bring about the realization of this potential, the PGC subgroup of the British GC Discussion Group has undertaken a detailed study into the problems of interlaboratory reproducibility in PGC (1). It should be emphasized that excellent qualitative and quantitative intralaboratory reproducibility has been achieved by many workers (2) and therefore should not be confused with problems of interlaboratory reproducibility.


Pyrolysis Temperature Curie Point Pyrolysis Condition Ferromagnetic Wire Interlaboratory Reproducibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.B. Coupe, C.E.R. Jones, and S.G. Perry, J. Chromatog. 47, 291 (1970).CrossRefGoogle Scholar
  2. 2.
    R.L. Levy, Chromatog. Rev. 8, 48 (1966).CrossRefGoogle Scholar
  3. 3.
    R.L. Levy, J. Gas Chromatog. 5, 107 (1967).Google Scholar
  4. 4.
    R.L. Levy and C.J. Wolf, 158th American Chemical Society Meeting, New York, N.Y., Sept.1969.Google Scholar
  5. 5.
    R.L. Levy, D.L. Fanter, and C.J. Wolf, Anal. Chem. 44, 38 (1972).CrossRefGoogle Scholar
  6. 6.
    W. Simon and H. Giacobbo, Chem.-Ing.-Tech. 37, 709 (1965).CrossRefGoogle Scholar
  7. 7.
    K. Ettre and P.F. Varadi, Anal. Chem. 35, 69 (1963).CrossRefGoogle Scholar
  8. 8.
    O.F. Folmer and L.V. Azarraga, J. Chromatog. Sci. 7, 663 (1969).Google Scholar
  9. 9.
    W.T. Restau and N.E. Vanderborgh, Anal. Chem. 43, 702 (1971).CrossRefGoogle Scholar
  10. 10.
    D.L. Fanter, R.L. Levy, and C.J. Wolf, Anal. Chem. 44, 43 (1972).CrossRefGoogle Scholar
  11. 11.
    D.L. Fanter, J.Q. Walker, and C.J. Wolf, Anal. Chem. 40, 2168 (1968).CrossRefGoogle Scholar
  12. 12.
    A. Barlow, R.S. Lehrle, J.C. Robb, and D. Sunderland, Polymer 8, 537 (1967).CrossRefGoogle Scholar
  13. 13.
    F. Farre-Rius and G. Guiochon, Anal. Chem. 40, 998 (1968).CrossRefGoogle Scholar
  14. 14.
    A Barlow, R.S. Lehrle, and J.C. Robb, Makromol. Chem. 54, 230 (1962).CrossRefGoogle Scholar
  15. 15.
    R.L. Levy, C.J. Wolf, and J. Oro, J. Chromatog. Sci. 8, 524 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Clarence J. Wolf
    • 1
  • Ram L. Levy
    • 1
  1. 1.McDonnell Douglas Research LaboratoriesMcDonnell Douglas Corp.St. LouisUSA

Personalised recommendations