Advertisement

Real-Time High-Resolution Mass Spectrometry

The Measurement of Accurate Molecular and Fragment Mass, and Relative Ionic Abundance: The Detection and Identification of Unresolved Isobaric Species
  • A. L. Burlingame
  • D. H. Smith
  • T. O. Merren
  • R. W. Olsen
Part of the Progress in Analytical Chemistry book series (PAC, volume 4)

Abstract

A detailed description of the performance of a computer-coupled, high-resolution mass spectrometer system is presented. The results obtained from this system, which consist of accurate mass and intensity measurements for all ionic species present in a mass spectrum, are presented and discussed in the context of both system evaluation and application to organic analysis. The results indicate that mass measurement accuracies of 1 ppm or better are routinely obtainable through the use of the fouraverage technique, and that intensity measurement accuracy is limited only by ion statistics. Furthermore, system performance remains the same over a wide range of scan rates and mass spectrometer resolutions. Applications of such a system to organic analysis permits rapid acquisition and analysis of spectra and drastically reduces elemental composition ambiguities. A method for resolution of unresolved multiplets based on the mass measurement performance of the system is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bommer, W. J. McMurray, and K. Biemann, 12th Annual Conference on Mass Spectrometry and Allied Topics, Montreal (June 7–12, 1964), p. 428. A. L. Burlingame, EUCHEM Conference on Mass Spectrometry, Sarlât, France, September 7–12, 1965.Google Scholar
  2. 2.
    A. L. Burlingame, Advances in Mass Spectrometry, Vol. 4 (E. Kendrick, ed.), The Institute of Petroleum, London (1968), p. 15. W. J. McMurray, S. R. Lipsky, and B. N. Green, ibid., p. 77. C. Merritt, Jr., P. Issenberg, and M. L. Bazinet, ibid., p. 55. H. C. Bowen, E. Clayton, D. J. Shields, and H. M. Stanier, ibid., p. 257.Google Scholar
  3. H. C. Bowen, T. Chenerix-Trench, S. D. Drackley, R. C. Faust, and R. H. Saunders, J. Sci. Instrum. 44, 343 (1967).CrossRefGoogle Scholar
  4. W. J. McMurray, B. N. Green, and S. R. Lipsky, Anal. Chem. 38, 1194 (1966).CrossRefGoogle Scholar
  5. 3.
    A. L. Burlingame, D. H. Smith, and R. W. Olsen, Anal. Chem. 40, 13 (1968).CrossRefGoogle Scholar
  6. 4.
    A. L. Burlingame, D. H. Smith, R. W. Olsen, and T. O. Merren, 16th Annual Conference on Mass Spectrometry and Allied Topics, Pittsburgh (May 12–17, 1968). D. H. Smith, R. W. Olsen, and A. L. Burlingame, ibid.Google Scholar
  7. 5.
    D. D. Tunnicliff and P. A. Wadsworth, private communication.Google Scholar
  8. 6.
    R. Venkataraghavan, F. W. McLafferty, and J. W. Amy, Anal. Chem. 39, 178(1967).CrossRefGoogle Scholar
  9. 7.
    A. L. Burlingame, D. H. Smith, and R. W. Olsen, Anal. Chem. (in preparation).Google Scholar
  10. 8.
    C. La Lau, Mass discrimination caused by electron-multiplier detectors, in: Topics in Organic Mass Spectrometry (A. L. Burlingame, ed.), Wiley-Interscience, New York (in press).Google Scholar
  11. 9.
    A. L. Burlingame and D. H. Smith, unpublished results.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • A. L. Burlingame
    • 1
  • D. H. Smith
    • 1
  • T. O. Merren
    • 1
  • R. W. Olsen
    • 1
  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations