Advertisement

Transition and Developments

  • Francis J. Murray
Part of the Mathematical Concepts and Methods in Science and Engineering book series (MCSENG, volume 12)

Abstract

It will be recalled that Sumerian mathematics involved problems for which a solution was given in algorithmic form. The problem was stated in the form of a specific situation with definite numbers, and the procedure for obtaining the solution was a sequence of arithmetic operations. The arithmetic character is in contrast with the “geometric algebra” of Euclid.

Keywords

Solar System Apparent Motion Dover Publication Orbital Motion Geometric Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bierberbach, L., Conformai Mapping, Chelsea Publishing Company, New York, (1953).Google Scholar
  2. 2.
    Carslaw, H. S., The Elements of Non-Euclidean Plane Geometry and Trigonometry, Longmans, Green and Company, London (1916).Google Scholar
  3. 3.
    Chace, A. B.; Bull, L.; Manning, H. P.; and Archibald, R. C, The Rhind Mathematical Papyrus, Vol. 2, Mathematical Association of America, Oberlin, Ohio (1929).Google Scholar
  4. 4.
    Daus, Paul, H., College Geometry, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1941).Google Scholar
  5. 5.
    Dreyer, J. L. E., A History of Astronomy from Thaïes to Kepler (reprint), Dover Publications, Inc., New York (1953).Google Scholar
  6. 6.
    Dijksterhuis, E. G., Archimedes (English translation) Ejnar Munksgaard, Copenhagen (1956).Google Scholar
  7. 7.
    Einstein, A. et al., The Principle of Relativity (reprint), Dover Publications, Inc., New York (1952).Google Scholar
  8. 8.
    Forder, H. G., The Foundations of Euclidean Geometry, Dover Publications, Inc., New York (1958).Google Scholar
  9. 9.
    Forder, H. G., Geometry, An Introduction, Harper Torchbooks, New York (1962).Google Scholar
  10. 10.
    Heath, T. L., Diophantus of Alexandria, Cambridge University Press, Cambridge, United Kingdom (1910).Google Scholar
  11. 11.
    Heath, T. L., The Thirteen Books of Euclid’s Elements, (reprint), Dover Publications, Inc., New York (1956).Google Scholar
  12. 12.
    Hilbert, D., Foundations of Geometry (reprint), Open Court, La Salle, Illinois (1971).Google Scholar
  13. 13.
    Jansen, L. and Boon, M., The Theory of Finite Groups, North-Holland Publishing Company, Amsterdam/John Wiley and Sons, Inc., New York (1967).Google Scholar
  14. 14.
    Lines, L., Solid Geometry, Dover Publications, Inc., New York (1965).Google Scholar
  15. 15.
    Manning, H. P., Introductory Non-Euclidean Geometry, Dover Publications, Inc., New York (1963).Google Scholar
  16. 16.
    Miczaika, G. R., and Sinton, W. M., Tools of the Astronomers, Harvard University Press, Cambridge, Massachusetts (1961).Google Scholar
  17. 17.
    Moon, P., The Abacus, Gordon and Breach, New York (1971).Google Scholar
  18. 18.
    Morrow, G. R., Proclus: A Commentary on the First Book of Euclid’s Elements, Princeton University Press, Princeton, New Jersey (1970).Google Scholar
  19. 19.
    Murray, F. J., Mathematical Machines, Columbia University Press, New York (1961).Google Scholar
  20. 20.
    Neugebauer, O., The Exact Sciences in Antiquity (reprint), Dover Publications, Inc., New York (1969).Google Scholar
  21. 21.
    Neugebauer, O., and Satz, A., Mathematical Cuneiform Texts, American Oriental Series. Vol. 29 (1945); published jointly by the American Oriental Society and the American Schools of Oriental Research, New Haven, Connecticut.Google Scholar
  22. 22.
    Peet, T. E., Mathematics in ancient Egypt, Bulletin of the John Rylands Library, 15(2) (July 1931), Manchester University Press, Manchester, England.Google Scholar
  23. 23.
    Raeder, H., Stromgen, E., and Stromgen, B., Tycho Brahe’s Description of His Instruments and Scientific Work, Royal Danish Academy of Sciences and Letters, Copenhagen (1946).Google Scholar
  24. 24.
    Smart, S. M., Text-Book on Spherical Astronomy (5th edition), Cambridge University Press, Cambridge, United Kingdom (1962).Google Scholar
  25. 25.
    Smith, D. E., A Source Book in Mathematics McGraw-Hill Book Co., New York (1929).Google Scholar
  26. 26.
    Struik, D. J., A Concise History of Mathematics, Dover Publications, Inc., New York (1948).Google Scholar
  27. 27.
    Struve, W. W., Mathematische Papyrus der staetlichen Museum der Schoenen Kunste, Quellen und Studien zur Geschichte der Mathematik, Vol. 1, Part A, J. Springer Berlin (1930).Google Scholar
  28. 28.
    Thackeray, A. D., Astronomical Spectroscopy, The MacMillan Company, New York (1961).Google Scholar
  29. 29.
    Van der Waerden, B. L., Science Awakening, P. Noordhoff Ltd., Gröningen, Holland (1954).Google Scholar
  30. 30.
    Ver Eeke, Paul, Diophante d’Alexandrie, Albert Blanshard, Paris (1959).Google Scholar
  31. 31.
    Whitehead, T. N., Instruments and Accurate Mechanisms (reprint), Dover Publications, Inc., New York (1954).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Francis J. Murray
    • 1
  1. 1.Duke UniversityDurhamUSA

Personalised recommendations