Ancient Mathematics

  • Francis J. Murray
Part of the Mathematical Concepts and Methods in Science and Engineering book series (MCSENG, volume 12)


We are interested in the improvement of mathematical understanding. Mathematical understanding is a necessary support for most complex cultures and is usually incorporated into both basic and technical education. Thus our present mathematical education has a layer structure, with the lower layers corresponding to the most widespread needs. In general the mathematical education of a culture is an indicator of its technical aspects. Since educational material tends to survive because there is so much of it, it is an excellent basis for the study of the growth of mathematical understanding.


Geometric Algebra Conic Section Regular Polygon Circular Cone Plane Layout 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bochner, Salomon, The Role of Mathematics in the Rise of Science, Princeton University Press, Princeton, New Jersey (1966).Google Scholar
  2. 2.
    Chace, A. B. et al, The Rhind Mathematical Papyrus (2 vols.), Mathematical Association of America, Oberlin, Ohio (1929).Google Scholar
  3. 3.
    De Wulf, Maurice, The System of Thomas Aquinas (reprint), Dover Publications Inc., New York (1959).Google Scholar
  4. 4.
    Dijksterhuis, E.G., Archimedes (English translation), Ejnar Munksgaard, Copenhagen (1956).Google Scholar
  5. 5.
    Heath, Sir Thomas L., The Thirteen Books of Euclid’s Elements (reprint), 2nd edition, Dover Publications Inc., New York (1956).Google Scholar
  6. 6.
    Jowett, B., Plato, “The Republic and Other Works,” Doubleday and Company, Garden City, N.Y.Google Scholar
  7. 7.
    Morrow, G. R., Proclus: A Commentary on the First Book of Euclid’s Elements, Princeton University Press, Princeton, New Jersey (1970).Google Scholar
  8. 8.
    Neugebauer, O., The Exact Sciences in Antiquity (reprint), Dover Publications, Inc., New York (1969).Google Scholar
  9. 9.
    Neugebauer, O., and Satz, A., Mathematical Cuneiform Texts, American Oriental Series, Vol. 29 (1945); published jointly by the American Oriental Society and the American Schools of Oriental Research, New Haven, Connecticut.Google Scholar
  10. 10.
    Peet, T. E., Mathematics in ancient Egypt, Bull. John Rylands Library, 15(2) (July 1931), Manchester University Press, Manchester, England.Google Scholar
  11. 11.
    Struve, W. W., Mathematische Papyrus der staatlichen Museum der Schoenen Künste, Quellen und Studien zur Geschichte der Mathematik, Vol. 1, Part A, J. Springer, Berlin (1930).Google Scholar
  12. 12.
    Van der Waerden, B. L., Science Awakening, P. Noordhoff, Ltd., Grönigen, Holland (1954).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Francis J. Murray
    • 1
  1. 1.Duke UniversityDurhamUSA

Personalised recommendations