Advertisement

Stochastic Programming

  • V. V. Kolbin
Part of the Progress in Mathematics book series (PM, volume 11)

Abstract

The present article is a general survey of the problems of stochastic programming. It is based on lectures delivered by the author to graduating students of the Cybernetics Section of the Economics Department of Leningrad State University (LGU) in 1967 and 1968.

Keywords

Programming Problem Extreme Point Dual Problem Linear Programming Problem Stochastic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Arbuzova, N. I., On the stochastic stability of dual linear programming problems, Ékon. i Mat. Metody, 2 (4): 558–562 (1966).MathSciNetGoogle Scholar
  2. 2.
    Arbuzova, N. I., Interrelation of the stochastic a-stability of linear and fractional-linear programming problems of a special form,“Ékon. i Mat. Metody, 4 (1): 108–110 (1968).MathSciNetGoogle Scholar
  3. 3.
    Arbuzova, N. I., Investigation of the Stochastic Stability of Mathematical Programming Problems, Author’s Abstract, Moscow (1967).Google Scholar
  4. 4.
    Arbuzova, N. I. and Danilov, V. L., A stochastic linear programming problem and its stability, Dokl. Akad. Nauk SSSR, 162 (1): 33–35 (1965).MathSciNetGoogle Scholar
  5. 5.
    Gol’shtein, E. G. and Yudin, D. B., New Trends in Linear Programming, Sov. Radio, Moscow (1966), 524 pages.Google Scholar
  6. 6.
    Ermol’ev, Yu. M. and Nekrylova, Z. V., Stochastic optimization methods, Kibernetika, No. 6, pp. 96–98 (1966).MathSciNetGoogle Scholar
  7. 7.
    Ermol’ev, Yu. M. and Nekrylova, Z. V., The method of stochastic gradients and its application, in: Optimal Decision Theory, Semin. No. 1, Kiev (1967), pp. 24–47.Google Scholar
  8. 8.
    Ermol’ev, Yu. M. and Shor, N. Z., A random search method for two-stage stochastic programming problems and its generalization, Kibernetika, No. 1, pp. 90–92 (1968).Google Scholar
  9. 9.
    Pervozvanskaya, T. N., Stochastic Linear Programming, Problems in the Application of Mathematics to Socialist Economics, Coll. 2, Izd. LGU (1965).Google Scholar
  10. 10.
    Roginskii, B. Ya., Optimization Plan for the Operation of a Marine Transportation Fleet, Author’s Abstract (1966).Google Scholar
  11. 11.
    Soldatov, V. E., A linear programming problem with chance-constraints, Sibirsk. Mat. Zh., 6 (3): 705–710 (1963).MathSciNetGoogle Scholar
  12. 12.
    Soldatov, V. E., “On stochastic programming problems, in: Mathematical Programming, Nauka, Moscow (1966), pp. 78–89.Google Scholar
  13. 13.
    Soldatov, V. E., On linear programming problems with random data, in: Mathematical Models and Optimal Planning Methods, Nauka, Novosibirsk (1966), pp. 54–64.Google Scholar
  14. 14.
    Shakhidi, A. A., Method for the solution of a transportation problem with random demand, Izv. Akad. Nauk Tadzh. SSR, No. 4 (46), pp. 19–27 (1966).Google Scholar
  15. 15.
    Shor, N. Z. and Shchepakin, M. B., Algorithm for the solution of a two-stage stochastic programming problem, Kibernetika, No. 3, pp. 56–58 (1968).Google Scholar
  16. 16.
    Yudin, D. B., On a class of stochastic programming problems, Dokl. Akad. Nauk SSSR, 177 (6): 1292–1923 (1967).Google Scholar
  17. 17.
    Yudin, D. B., New approaches to stochastic programming, Ékon. i. Mat. Metody, 4(6): 907–919 (1968)Google Scholar
  18. 18.
    Babbar, M. M., Distributions of solutionsof a set of linear equations with application to linear programming, J. Amer. Statist. Assoc., 50 (271): 854–869 (1955).MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Babbar, M. M., Heady, E., and Tintner, G., Programming with consideration of variations in input coefficients, J. Farm Econ., 37: 333 (1955).CrossRefGoogle Scholar
  20. 20.
    Balakrishnan, A., Optimal control problems in Banach spaces, J. Soc. Indust. and Appl. Math., A3 (1): 152–180 (1965).MATHCrossRefGoogle Scholar
  21. 21.
    Balinfty, J. and Prekopa, A., Simulation of basis stability in stochastic linear programming, presented at SIGMAR Workshop on Stochastic Linear Programming, Princeton (Dec., 1965 ).Google Scholar
  22. 22.
    Barnett, S., Stability of the solution to a linear programming problem, Operat. Res. Quart., 13 (1): 219–228 (1962).Google Scholar
  23. 23.
    Beale, E. M. L., On quadratic programming, Naval Res. Logist. Quart., 6(3):Google Scholar
  24. 24.
    Beale, E. M. L., The use of quadratic programming in stochastic linear programming, The RAND Corp., Santa Monica (Aug., 1961 ), p. 2404.Google Scholar
  25. 25.
    Beale, E. M. L., On minimizing a convex function subject to linear inequalities, J. Roy. Statist. Soc., B17 (2): 173–184 (1955).MathSciNetMATHGoogle Scholar
  26. 26.
    Ben-Israel, A., On Some Problems of Mathematical Programming, Ph. D. Thesis in Engineering Science, Northwestern Univ., Evanston, Ill. (1961).Google Scholar
  27. 27.
    Ben-Israel, A. and Charnes, A., Constant-Level Investory Policies and Chance-Constrained Programming Problems, Northwestern Univ., Evanston, Ill. (1961).Google Scholar
  28. 28.
    Bereanu, B., Stochastic transportation problem, I, II: Random costs, Cornunicarile Acad. R. P. R., 13 (4) (1963).Google Scholar
  29. 29.
    Bereanu, B., On stochastic linear programming, I: Distribution problems: a single random variable, Rev. Math. Pures Appl., 8 (4): 683–697 (1963).MathSciNetGoogle Scholar
  30. 30.
    Bereanu, B., Distribution problems and minimum-risk solutions in stochastic programming, Colloquim on Applications of Mathematics to Economics, Budapest, 1963, Hung. Acad. Sci., Budapest (1965), pp. 37–42.Google Scholar
  31. 31.
    Bereanu, B., On stochastic linear programming, II: Distribution problems: nonstochastic technological matrix, Rev. Roumaine Math. Pures Appl., 11(6): 713–724 (1966)Google Scholar
  32. 32.
    Bereanu, B., The Problem of the Distribution Function in Linear Programming and Minimum-Risk Solutions (unpublished dissertation), Univ. Bucharest (1963).Google Scholar
  33. 33.
    Bereanu, B., Some applications of stochastic programming to planning [in Romanian], Proc. Sci. Conf. Statistics D. C. S., Bucharest (1963).Google Scholar
  34. 34.
    Bereanu, B., Minimum-risk program in stochastic linear programming [in French], Compt. Rend., 259 (5): 981–983 (1964).MathSciNetMATHGoogle Scholar
  35. 35.
    Bereanu, B., A property of convex piecewise-linear functions with applications to mathematical programming, Unternehmensforschung, 9 (2): 112–119 (1965).MathSciNetMATHGoogle Scholar
  36. 36.
    Bereanu, B., On the distribution of the optimum in stochastic linear programming, Anal. Univ. Bucuresti, Math. Mech., 14 (2): 41–48 (1965).MathSciNetMATHGoogle Scholar
  37. 37.
    Bereanu, B., On stochastic linear programming; the Laplace transform of the distribution of the optimum and applications, J. Math. Anal. Appl., 15 (2): 280–294 (1966).MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Bracken, J., Statistical Decision Analysis of a Linear Programming Problem with a Stochastic Objective Function, George Washington Univ., Serial T -183 (July, 1965 ).Google Scholar
  39. 39.
    Bracken, J. and Soland, R. M., Statistical Decision Analysis of Stochastic Linear Programming Problems, Research Analysis Corp., McLean, Virginia (1965).Google Scholar
  40. 40.
    Bracken, J. and Soland, R. M., Statistical decision analysis of stochastic linear programming problems, Naval Res. Logist. Quart., 13 (3): 205–225 (1966).MATHCrossRefGoogle Scholar
  41. 41.
    Brans, J. P., Stochastic linear programs [in French], Cahiers Centre Etudes Rech. Operat., 6(1):19–43(1964).Google Scholar
  42. 42.
    Candler, W., Linear Programming with Stochastic Yields, Ph. D Thesis, Iowa State Univ., Ames, Iowa (1957).Google Scholar
  43. 43.
    Charnes, A., Deterministic Equivalents for Different Objectives in Chance-Constrained Programming, U. S. Office Naval Res., Res. Memo.No. 37, Technological Inst., Northwestern Univ. (Dec., 1960 ).Google Scholar
  44. 44.
    Charnes, A., Stochastic Approximations to Optimal Decision Rules, U. S. Office Naval Res., Res. Memo. No. 11, Technological Inst., Northwestern Univ. (Oct., 1958 ).Google Scholar
  45. 45.
    Charnes, A., Systems evaluation and repricing theorems, Management Sci., 9 (1): 33–49 (1962).MathSciNetCrossRefGoogle Scholar
  46. 46.
    Charnes, A., The theory of search: optimum distribution of search effort, Management Sci., 5 (1): 44–50 (1958).MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Charnes, A. and Cooper, W. W., Chance-constraints and normal deviates, J. Amer. Statis. Assoc., 57 (297): 134–148 (1962).MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Charnes, A. and Cooper, W. W., Chance-constrained programming, Management Sci., 6 (1): 73–79 (1959).MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Charnes, A. and Cooper, W. W., Deterministic equivalents for optimizing and satisficing under chance-constraints, Operat. Res., 11 (1): 18–39 (1963).MathSciNetMATHGoogle Scholar
  50. 50.
    Charnes, A. and Cooper, W. W., Management Models and Industrial Applications of Linear Programming, New York (1961), 859 pages.Google Scholar
  51. 51.
    Charnes, A., Cooper, W. W., and Kortanek, K., Duality, Haar programs, and finite sequence spaces, Proc. Nat. Acad. Sci. USA, 48 (5): 783–786 (1962).MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Charnes, A., Cooper, W. W., and Symonds, G., Cost horizon and certainty equivalents: an approach to stochastic programming of heating oil, Management Sci., 4 (4): 235–263 (1958).CrossRefGoogle Scholar
  53. 53.
    Charnes, A., Cooper, W. W., and Thompson, G. L., Constrained Generalized Medians and Linear Programming under Uncertainty, U. S. Office Naval Res., Res. Memo. No. 9, ONR Research Project on Temporal Planning and Management Decision under Risk and Uncertainty, Technological Inst., Northwestern Univ., Evanston, Ill, (1961).Google Scholar
  54. 54.
    Charnes, A., Cooper, W. W., and Thompson, G. L., Critical path analyses via chance-constrained and stochastic programming, Operat. Res., 12 (3): 460–470 (1964).MathSciNetMATHGoogle Scholar
  55. 55.
    Charnes, A., Cooper, W. W., and Thompson, G. L., Constrained generalized medians and hypermedians as deterministic equivalents for two-stage programs under uncertainty, Management Sci., 12 (1): 83–112 (1965).MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Charnes, A., Dreze, J., and Miller, M., Decision and horizon rules for stochastic planning problems; a linear example, Econometrica, 34 (2): 307–330 (1966).MATHCrossRefGoogle Scholar
  57. 57.
    Charnes, A., and Kirby, M., Optimal decision rules for the E-model of chance-constrained programming, Cahiers Centre Etudes Rech. Operat., 8 (1): 5–44 (1966).MathSciNetMATHGoogle Scholar
  58. 58.
    Charnes, A., and Kirby, M., Some special P-models in chance-constrained programming, Management Sci., 14 (3): 183–195 (1968).MathSciNetCrossRefGoogle Scholar
  59. 59.
    Charnes, A., and Kirby, M., Chance-constrained generalized networks, Operat. Res., 14 (6): 1113–1120 (1966).MATHGoogle Scholar
  60. 60.
    Charnes, A., Kirby, M., and Raike, W., Solution theorems in probabilistic programming: a linear programming approach, J. Math. Anal. Appl., 20 (3): 565–582 (1967).MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Charnes, A., and Stedry, A. C., Investigations in the theory of multiple-budgeted goals, in: Management Controls, Mebran, New York (1964), pp. 186–204.Google Scholar
  62. 62.
    Chester, L. B., Analysis on the Effect of Variance of Linear Programming Problems, M. Sc. Thesis, Air Force Inst. Technology, Air Univ., Wright-Patterson Air Force Base, Ohio (1964).Google Scholar
  63. 63.
    Coleman, W. H., On Quadratic Programming with Application to Stochastic Production Smoothing, Master’s Thesis, Lehigh Univ. (1965).Google Scholar
  64. 64.
    Dantzig, G., Linear programming under uncertainty, Management Sci., 1 (2): 197–206 (1955).MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Dantzig, G., Linear Programming and Extensions, Princeton Univ. Press (1963), 625 pages.Google Scholar
  66. 66.
    Dantzig, G., Recent advances in linear programming, Management Sci., 2 (2): 131–144 (1956).MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Dantzig, G. and Madansky, A., On the solution of two-stage linear programs under certainty, Proc. Fourth Berkeley Sympos. Mathematical Statistics and Probability, Vol. 1 (1960), pp. 165–176.Google Scholar
  68. 68.
    Dresher, M., Karlin, S., and Shapley, L. S., Polynomial games, Ann. Math. Studies, No. 24, pp. 161–180 (1950).MathSciNetGoogle Scholar
  69. 69.
    Edmundson, H. P., Bounds on the expectation of a convex function of a random variable, The RAND Corp., Santa Monica (Apr., 1957 ), p. 982.Google Scholar
  70. 70.
    El-Agizy, M., Programming under Uncertainty with Discrete Distribution Function, Operations Research Center, Univ. Calif. Berkeley Res. Rep., ORC-64–13 (1964).Google Scholar
  71. 71.
    El-Agizy, M., Dynamic inventory models on stochastic linear programming, SIGMAR Workshop on Stochastic Linear Programming, Princeton (Dec., 1965 ).Google Scholar
  72. 72.
    El-Agizy, M., Two-stage programming under uncertainty with discrete distribution function, Operat. Res., 15 (1): 55–70 (1967).MathSciNetMATHGoogle Scholar
  73. 73.
    Elmaghraby, S. E., An approach to linear programming under uncertainty, Operat. Res., 7: 208–216 (1959).MathSciNetGoogle Scholar
  74. 74.
    Elmaghraby, S. E., Programming under Uncertainty, Ph. D. Thesis, Cornell Univ. (1958).Google Scholar
  75. 75.
    Elmaghraby, S. E., Allocation under uncertainty when the demand has continuous distribution function, Management Sci., 6 (3) (1960).Google Scholar
  76. 76.
    Evers, W. H., A new model for stochastic linear programming, Management Sci., 13 (9) (1967).Google Scholar
  77. 77.
    Evers, W. H., Stochastic Programming, Progress Report Univ. Michigan, No. 5 (1965).Google Scholar
  78. 78.
    Ferguson, A. R. and Dantzig, G., The allocation of aircraft on routes: an example of linear programming under uncertain demand, Management Sci., 3 (1): 45–73 (1965).MathSciNetCrossRefGoogle Scholar
  79. 79.
    Fiacco, A. V. and McCormick, G. P., The sequential unconstrained minimization technique for nonlinear programming a primal-dual method, Management Sci., 10 (2): 360–366 (1964).CrossRefGoogle Scholar
  80. 80.
    Fiacco, A. V., Computational algorithm for the sequential unconstrained minimization technique for nonlinear programming, Management Sci., 10(4): 601–617 (1964).Google Scholar
  81. 81.
    Fischer, C. S., Linear Programming under Uncertainty in an Loo Space, Center for Research in Management Science, Univ. Calif., Berkeley, Tech. Rep. No.27 (Dec., 1962 ).Google Scholar
  82. 82.
    Fortet, R., Stochastic linear programs [in French], Colloquium on Applications of Mathematics to Economics, Budapest, 1963, Hung. Acad. Sci., Budapest (1965), pp. 99–114.Google Scholar
  83. 83.
    Freund, R. J., The introduction of risk into a programming model, Econometrica, 24 (3): 253–263 (1956).MathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    Fromovitz, S., Nonlinear programming with randomization, Management Sci., 11 (9): 831–846 (1965).MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Garvin, W., Statistical linear programming, Chapt. 12 in: Introduction to Linear Programming, McGraw-Hill, New York (1960), pp. 172–190.Google Scholar
  86. 86.
    Geoffrion, A. M., On the Relevance of the Vector Maximum Problem to Decision-Making under Uncertainty and Risk, Inst. Math. Studies in the Social Sciences, Stanford Univ., Palo Alto, Calif., Tech. Rep. No. 6 (June, 1964 ).Google Scholar
  87. 87.
    Geoffrion, A. M., A Parametric Programming Solution to the Vector Maximum Problem with Applications to Decisions under Uncertainty, Doct. Dissert., Stanford Univ. (1965), 152 pages; Dissert. Abstr., 26 (3): 1663 (1965).Google Scholar
  88. 88.
    de Ghellinck, G., Sequential decision problems [in French], Cahiers Centre Etude Rech. Operat., 2 (2): 161–179 (1960).MATHGoogle Scholar
  89. 89.
    Hadley, G., Nonlinear and Dynamic Programming, Addison-Wesley, Reading, Mass. (1964), 484 pages; Amer. Book. Publ. Rec., 5 (10): 37 (1964).Google Scholar
  90. 90.
    Hanson, M. A., Errors and stochastic variations in linear programming, Austral. J. Statist., 2: 41–46 (1960).MathSciNetMATHGoogle Scholar
  91. 91.
    Hanson, M. A., Stochastic nonlinear programming, J. Austral. Math. Soc., 4 (3): 347–353 (1964).MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Heady, E. O. and Candler, W., Nonlinear and risk programming: an example with stochastic yields, in: Linear Programming Methods, Iowa State Univ. Press, Ames, Iowa (1958), pp. 554–590.Google Scholar
  93. 93.
    Jensen, J., The Use of Mean Values in Stochastic Linear Programming, M. B. A. Thesis, Univ. Pennsylvania (1959).Google Scholar
  94. 94.
    Kall, P., Qualitative expressions for some stochastic programming problems [in German], Z. Wahrscheinlichkeitstheor. and Verw. Geb., 6 (3) (1966).Google Scholar
  95. 95.
    Kall, P., On an application of finite Markov chains in linear and nonlinear programming [in German], Z. Wahrscheinlichkeitstheor. and Verw. Geb., 3 (2): 89–109 (1964).MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Kall, P., The two-stage stochastic linear programming problem [in German], Z.Wahrscheinlichkeitstheor. and Verw. Geb., 8: 101–112 (1967).MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Kall, P., Production optimizing by means of stochastic programming [in German], Industr. Organization, 36 (10) (1967).Google Scholar
  98. 98.
    Kataoka, S., A stochastic programming model, Econometrica, 31(1–2):181–196 (1963).Google Scholar
  99. 99.
    Kelley, Y. E., Jr., The cutting-plane method for solving convex programs, J. Soc. Industr. Appl. Math., 8 (4): 703–712 (1960).MathSciNetCrossRefGoogle Scholar
  100. 100.
    King, W. R., A stochastic personnel assignment model, Operat. Res., 13 (1): 67–81 (1965).CrossRefGoogle Scholar
  101. 101.
    Kirby, M. G. L., Generalized Inverses and Chance-Constrained Programming, Doct. Dissert., Northwestern Univ. (1965), 256 pages; Dissert. Abstr., 26 (6): 3370 (1965).Google Scholar
  102. 102.
    Kohler, D. and Wets, R., Programming under Uncertainty: An Experimental Code for the Complete Problem, Boeing Document DI-82–0391, Boeing Sci. Res. Labs., Seattle, Wash. (Dec., 1964 ).Google Scholar
  103. 103.
    Kolta, G. and Murty, V., Two-Stage Linear Program under Uncertainty: A Basic Property of the Optimal Solution, Operations Research Center (Feb., 1966 ).Google Scholar
  104. 104.
    Kortanek, K. O. and Soden, J. V., On the Charnes-Kirby optimality theorem for the conditional chance-constrained E-model, Cahiers Centre Etudes Rech. Operat., 9 (2): 87–98 (1967).MATHGoogle Scholar
  105. 105.
    Krelle, W., Linear programming under uncertainty, Conf. Sixth Congr. Internat. Inst. Management Sci., Paris (1959).Google Scholar
  106. 106.
    Kuhn, H. W. and Quandt, R. E., An experimental study of the simplex method, Proc. Symp. Appl. Math., 15: 107–124 (1963).MathSciNetCrossRefGoogle Scholar
  107. 107.
    Kushner, H., On the stochastic maximum principle: fixed time of control, RIAS Report (1963).Google Scholar
  108. 108.
    Lieu, B. T., On a problem of convexity and its application to nonlinear stochastic programming, J. Math. Anal. Appl., 8 (2): 177–187 (1964).MathSciNetCrossRefGoogle Scholar
  109. 109.
    Lonseth, A. T., Systems of linear equations with coefficients subject to errors, Ann. Math. Statis., No. 13 (1942).Google Scholar
  110. 110.
    Madansky, A., Inequalities for stochastic linear programming problems, Management Sci:, 6 (2): 197–204 (1960).MathSciNetCrossRefMATHGoogle Scholar
  111. 111.
    Madansky, A., Methods of solution of linear programs under uncertainty, Operat. Res., 10 (4): 463–471 (1962).MathSciNetMATHGoogle Scholar
  112. 112.
    Madansky, A., Dual variables in two-stage linear programming under uncertainty, J. Math. Anal.Appl., 6 (1): 98–108 (1963).MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Madansky, A., Linear programming under uncertainty, in: Recent Advances in Mathematical Programming, New York-San Francisco-Toronto-London (1963), pp. 103–110.Google Scholar
  114. 114.
    Madansky, A., Some Results and Problems in Stochastic Linear Programming, RAND Corp., Santa Monica (Jan., 1959 ), p. 1596.Google Scholar
  115. 115.
    Madansky, A., Use of the “expected-value solution” in linear programming under uncertainty, Proc. Second Internat. Congr. Operations Research, Aix -en-Provence (1960).Google Scholar
  116. 116.
    Madansky, A., Bounds of the expectation of a convex function of a multivariate random variable, Ann. Math., Statis., 30 (3): 743–746 (1959).MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Mangasarian, O. L., Nonlinear programming problems with stochastic objective functions, Management Sci., 10: 353–359 (1964).MathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    Mangasarian, O. L. and Rosen, J. B., Inequalities for stochastic nonlinear programming problems, Operat. Res., 12 (1): 143–154 (1964).MathSciNetMATHGoogle Scholar
  119. 119.
    Manne, A. S., Linear programming and sequential decisions, Management Sci., 6 (3): 259–267 (1960).MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    Markowitz, H. M., Portfolio Selections: “Efficient Diversification of Investments,” Wiley, New York (1959).Google Scholar
  121. 121.
    Merrile, W. C., Alternative programming models involving uncertainty, J. Farm Econ., 47 (8) (1965).Google Scholar
  122. 122.
    Mihoc, G., Unele precizari in legatura cu aplicarea programarii lineare, Revista de Statistica, 12: 13–18 (1959).Google Scholar
  123. 123.
    Mikes, D. R., Stochastic Programming Model for Production Smoothing, Master’s Thesis, Lehigh Univ. (1965).Google Scholar
  124. 124.
    Miller, L. B. and Wagner, H., Chance programming with joint constraints, Operat. Res., 13 (1965).Google Scholar
  125. 125.
    Morey, R. C., Some stochastic properties of a compound-renewal damage model, Operat. Res., 14 (5): 902–908 (1966).MathSciNetMATHGoogle Scholar
  126. 126.
    Naslund B. and Whinston, A. W., A model for multi-period decision making under uncertainty, Management Sci., 8 (1): 184–200 (1962).CrossRefGoogle Scholar
  127. 127.
    N aslund, 8. and Whinston, A. W., A Varational A pproach to Stochastic Programming, Research Report, Graduate School of Industrial Administration, Carnegie Inst. Technology and Cowles Commission, Yale Univ., Conn, (1964).Google Scholar
  128. 128.
    Popp, W., Unternehmensforschung, 17 (2): 65–74 (1963).Google Scholar
  129. 129.
    Prékopa, A., On the probability distribution of the optimum of a random linear program, SIAM J. Control, 4 (1): 211–222 (1965).Google Scholar
  130. 130.
    Radner, R., The application of linear programming to team decision problems, Management Sci., 5 (2): 143–150 (1959).MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Radner, R., The linear team: an example of linear programming under uncertainty, Proc. Second Sympos. Linear Programming, Vol. 1, pp. 381–396 (1955).MathSciNetGoogle Scholar
  132. 132.
    Reiter, S., Surrogates for uncertain decision problems: minimal information for decision making, Econometrica, 25 (2): 339–345 (1957).MathSciNetMATHCrossRefGoogle Scholar
  133. 133.
    Scheeweis, H., A general scheme for stochastic programming, Statist. Hefte, 9 (1962).Google Scholar
  134. 134.
    Schmaltz, J., Stochastic programming using cumulate demand distributions, SIGMAR Workshop on Stochastic Linear Programming, Princeton (Dec., 1965 ).Google Scholar
  135. 135.
    Schmaltz, J., Mixing Diets under Demand Uncertainty, Ph. D. Thesis, Univ. Chicago (1965).Google Scholar
  136. 136.
    Sengupta, J. K., On the Stability of Solutions of Stochastic Linear Programming (Dec., 1963 ).Google Scholar
  137. 137.
    Sengupta, J. K. and Kumar, T. K., An application of sensitivity analysis to a linear programming problem, Unternehmensforschung, 9 (1): 18–36 (1965).MATHGoogle Scholar
  138. 138.
    Sengupta, J. K. and Tintner, G., A stochastic programming interpretation of the domar-type growth model, Arthaniti Calcutta, India, 6: 1–11 (1963).MathSciNetGoogle Scholar
  139. 139.
    Sengupta, J. K., Tintner, G. and Millham, C., On some theorems of stochastic linear programming with applications, Management Sci. 10 (1): 143–159 (1963).MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Sengupta, J. K., Tintner, G. and Morrison, B., Stochastic linear programming with applications to economic models, Economica (London), 30(119): 262–276 (1963).Google Scholar
  141. 141.
    Sengupta, J. K., Tinnier, G. and Bao, V., An application of stochastic linear programming to development planning, Metroeconomica, 14 (1–3): 25–41 (1962).CrossRefGoogle Scholar
  142. 142.
    Shetty, C. M., A solution to the transportation problem with nonlinear costs, Operat. Res., 7 (5): 571–580 (1959).MathSciNetMATHGoogle Scholar
  143. 143.
    Simon, H. A., Dynamic programming under uncertainty with quadratic criterion function, Econometrica, 24: 74–81 (1956).MathSciNetMATHCrossRefGoogle Scholar
  144. 144.
    Simon, H. A., Theories of decision-makings in economics and behavioral sciences, Amer. Econ. Rev., 49 (3): 253–283 (1959).Google Scholar
  145. 145.
    Sinha, S. M., Stochastic Programming, Doct. Dissert., Univ. California, Berkeley (1963), 68 pages; Dissert. Abstr., 24 (3): 1192 (1963).Google Scholar
  146. 146.
    Sinha, S. M., S.ochastic Programming, Operations Research Center, Univ. California, Berkeley, ORC 63–22 (1963).Google Scholar
  147. 147.
    Sinha, S. M., Programming with standard errors in the constraints and the objective, in: Recent Advances in Mathematical Programming, New York (1963).Google Scholar
  148. 148.
    Van Slyke, R. and Wets, R., Programming under uncertainty and stochastic optimal control, SIAM J. Control, 4: 179–193 (1966).MATHCrossRefGoogle Scholar
  149. 149.
    Sreedharan, V. P. and Wein, H. H., A stochastic multistage, multiproduct investment model, SIAM J. Appl. Math., 15 (2): 347–358 (1967).MATHGoogle Scholar
  150. 150.
    Stoddart, A. W. J., An existence theorem for optimal stochastic programming, J. Austral. Math. Soc., 8 (1): 114–118 (1968).MathSciNetMATHCrossRefGoogle Scholar
  151. 151.
    Symonds, G., Stochastic scheduling by the horizon method, Management Sci., 8 (2): 138–167 (1962).MathSciNetMATHCrossRefGoogle Scholar
  152. 152.
    Symonds, G., Deterministic solutions for a class of chance-constrained programming problems, Operat. Res., 15 (3): 495–512 (1967).MathSciNetMATHGoogle Scholar
  153. 153.
    Symonds, G., Stochastic programming, SIGMAR Workshop on Stochastic Linear Programming, Princeton (Dec., 1965 ).Google Scholar
  154. 154.
    Symonds, G., Stochastic Scheduling, Part I: Stochastic Programming for a Single Period, Tech. Memo. No. 22, Operations Research Group, Case Inst. Technology, Cleveland, Ohio (Sept. 1964).Google Scholar
  155. 155.
    Symonds, G., Stochastic Scheduling, Part II: The Location of Planning Technology, Cleveland, Ohio (Nov., 1964 ).Google Scholar
  156. 156.
    Symonds, G., Stochastic Scheduling, Part III: Optimization Procedures, Tech. Memo. No. 27, Operations Research Group, Case Inst. Technology, Cleveland, Ohio (July, 1965 ).Google Scholar
  157. 157.
    Symonds, G., Doulliez, P., Steinmutz, C. and Chidambarm, T. S., Stochastic Scheduling, Part IV: Solution Methods for Stochastic Programming Problems, Tech. Memo., No. 39, Operations Research Group, Case Inst. Technology, Cleveland, Ohio (Aug., 1965 ).Google Scholar
  158. 158.
    Szwarc, W., The transportation problem with stochastic demand, Management Sci., 11 (1): 33–50 (1964).MathSciNetCrossRefGoogle Scholar
  159. 159.
    Talacko, J., On stochastic linear inequalities, Trab. Estadist„ 10 (2) (1959).Google Scholar
  160. 160.
    Theil, H., A note on certainty equivalence in dynamic planning, Econometrica.. 25 (2): 346–349 (1957).MathSciNetMATHCrossRefGoogle Scholar
  161. 161.
    Theil, H., Some reflections on static programming under uncertainty, Weltwirtsch. Arch., 87 (1): 124–138 (1961).Google Scholar
  162. 162.
    Thompson, G., Copper, W. and Charnes, A., Characterization by chance-constrained programming, in: Recent Advances in Mathematical Programming, New York-San Francisco-Toronto-London (1963), pp. 113–120.Google Scholar
  163. 163.
    Tinmer, G., Stochastic linear programming with applications to agricultural economics, Proc. Second Sympos. Linear Programming, Vol. 1 (1955), pp. 197–228.Google Scholar
  164. 164.
    Tinnier, G., A note on stochastic linear programming, Econometrica, 28 (2): 490–495 (1960).MathSciNetCrossRefGoogle Scholar
  165. 165.
    Tinmer, G., The use of stochastic linear programming in planning, Indian Econ. Rev., 5 (2): 159–167 (1960).MATHGoogle Scholar
  166. 166.
    Tintner, G., On some theorems of stochastic linear programming with applications, Management Sci., 10 (1): 143–159 (1963).MathSciNetMATHCrossRefGoogle Scholar
  167. 167.
    Tintner, G., Game theory, linear programming, and input-output analysis, Z. Nationalökon., 17 (1): 1–38 (1957).CrossRefGoogle Scholar
  168. 168.
    Tintner, G. and Narayanan, R., A multi-dimensional stochastic process for the explanation of economic development, Metrika, 11 (2): 85–90 (1966).MathSciNetMATHGoogle Scholar
  169. 169.
    Tintner, G., Millham, C. and Sengupta, J. K., A weak duality theorem for stochastic linear programming, Unternehmensforschung, 7 (1): 1–8 (1963).MathSciNetMATHGoogle Scholar
  170. 170.
    Tinmer, G., Sengupta, J. K. and Rao, V. Y., An application of stochastic linear programming to development planning, Metroeconomica, 14 (1–3): 25–41 (1962).Google Scholar
  171. 171.
    Tintner, G., Morrison, B. and Millham, C., Some Theorems in Stochastic Linear Programming, Res. Note, Univ. Southern California, Los Angeles, Calif. (1964).Google Scholar
  172. 172.
    Tornqvist, L., Some new principles for solving linear programming problems, Bull. Inst. Internat. Statist., 36: 197–227 (1957).MathSciNetGoogle Scholar
  173. 173.
    Vajda, S., Inequalities in stochastic linear programming, Bull. Inst. Internat. Statist., 36 (3): 357–363 (1958).MathSciNetGoogle Scholar
  174. 174.
    Vajda, S., Mathematical Programming, London (1961), 310 pages.Google Scholar
  175. 175.
    Van den Bogaard, P. J. M., On the Static Theory of Certainty Equivalence, Internat. Center Management Sci., Rotterdam, Rep, 6010 (1960).Google Scholar
  176. 176.
    Van den Panne, C. and Popp, W., Minimum-cost cattle feed under probabilistic protein constraints, Management Sci., 9 (3): 405–430 (1963).CrossRefGoogle Scholar
  177. 177.
    Van de Panne, C., Optimal strategy decisions for dynamic linear decision rules in feedback form, Econometrica, 33 (2): 307–320 (1965).MathSciNetMATHCrossRefGoogle Scholar
  178. 178.
    Van Moeseke,P., Stochastic linear programming, Yale Univ. Econ. Essays, 4 (2) (1964).Google Scholar
  179. 179.
    Van Moeseke, P., Dynamic risk programming with learning adjustment, Unternehmensforschung, 7 (4): 145–150 (1963).MathSciNetMATHGoogle Scholar
  180. 180.
    Van Moeseke, P., Truncated minimax-maximum approach to linear programming under risk, Econometrica 31 (1963).Google Scholar
  181. 181.
    Van Moeseke, P., and Tintner, G., Base duality theorem for stochastic and parametric linear programming, Unternehmensforschung, 8 (2): 75–79 (1964).MathSciNetMATHGoogle Scholar
  182. Van Slyke, R., Mathematical Programming and Optimal Control, Doct. Dissert,; Dissert. Abstr., 26 (2): 1075 (1965).Google Scholar
  183. 183.
    Votaw, D. F., Programming under conditions of uncertainty, Proc. Second Sympos. Linear Programming, Vol. 1, Nat. Bur. Stds., Washington, D. C. (1965), pp. 187–195.Google Scholar
  184. 184.
    Wagner, H. M., On the distribution of solutions in linear programming problems, J. Amer. Statist. Assoc., 53 (281): 161–163 (1958).MathSciNetCrossRefGoogle Scholar
  185. 185.
    Walkup, D. and Wets, R., Finding a Feasible Solution to Stochastic Programs with Fixed Resource, Boeing Sci. Res. Labs., Document D–1–82–0551 (1966).Google Scholar
  186. 186.
    Wedekind,H., Primal-dual algorithms for the optimization of Markov processes; a comparison of the Dantzig-Wolfe and Howard algorithms [in German], Unternehmensforschung, 8 (3): 128–135 (1964).MathSciNetMATHGoogle Scholar
  187. 187.
    Wesels, J., Stochastic Programming, Statist. Neerl., 21 (1) (1967).Google Scholar
  188. 188.
    Wets, Programming under uncertainty: the complete problem, Z Wahrscheinlichkeitstheor. and Verw. Geb., 4 (4): 316–339 (1966).MathSciNetMATHCrossRefGoogle Scholar
  189. 189.
    Wets, R., Programming under uncertainty: the equivalent convex program, J. Soc. Industr. Appl. Math., 14 (1): 89–105 (1966).MathSciNetMATHCrossRefGoogle Scholar
  190. 190.
    Wets, R., Programming under uncertainty; the solution set, SIAM J. Appl. Math., 14 (5): 1143–1151 (1966).MathSciNetMATHGoogle Scholar
  191. 191.
    Wets, R., Programming under Uncertainty, Doct, Dissert., Univ. California, Berkeley (1965), 90 pages; Dissert. Abstr., 26 (3): 1680 (1965).Google Scholar
  192. 192.
    Wets, R. and Witzgall, C., Algorithms for frames and lineality spaces of cones, J. Res. Nat. Bur. Stds., B71 (1): 1–7 (1967).MathSciNetMATHGoogle Scholar
  193. 193.
    Williams, A. C., A stochastic transportation problem, Operat. Res., 11 (5): 759–770 (1963).MATHCrossRefGoogle Scholar
  194. 194.
    Williams, A. C., On stochastic linear programming, J. Soc. Industr. Appl. Math., 13 (4): 927–940 (1965).MATHCrossRefGoogle Scholar
  195. 195.
    Williams, A. C., Approximation formulas for stochastic linear programming, SIAM J. Appl. Math., 14 (4): 558–577 (1966).Google Scholar
  196. 196.
    Williams, A. C., Approximations for the Transportation Problems with UncertaintyDemands, Research Dept., Secony Mobil Oil Co., Paulsboro, N. J. (1962).Google Scholar
  197. 197.
    Wolfe, P., The simplex method for quadratic programming, Econometrica, 27 (3): 282–398 (1959).MathSciNetCrossRefGoogle Scholar
  198. 198.
    Yosifescu, M. and Theodorescu, R., On linear programming [in French], Compt. Rend., 256 (253) (1963).Google Scholar
  199. 199.
    Yosifescu, M. and Theodorescu, R., On stochastic linear programming [in Romanian], Com. Acad. R. P.R. (1962).Google Scholar
  200. 200.
    Yosifescu, M. and Theodorescu, R., Statistical decisions and linear programming, Compt. Rend. Bulg. Acad. Sci., p. 17 (1964).Google Scholar
  201. 201.
    Yosifescu, M. and Theodorescu, R., Linear programming under uncertainty, Colloq. Applications of Mathematics to Economics, Budapest (1965).Google Scholar
  202. 202.
    Zâckovâ, J., On minimax solutions of stochastic linear programming problems, Casop. Pestov, Mat., 91 (4): 423–430 (1966).MATHGoogle Scholar
  203. 203.
    Zâckov, J., Stochastic linear programming [in Czech], Eckon.-Mat. Obzor, 3 (3): 273–297 (1967).Google Scholar
  204. 204.
    Gantmakher, F. R., Theory of Matrices, Gostekhizdat, Moscow (1953), 491 pages.Google Scholar
  205. 205.
    Arrow, K. J., et al., Studies in Linear and Nonlinear Programming, Stanford Univ. Press, Stanford, Calif. (1958), 229 pages, Publishers Weekly, 175 (9): 87 (1960).Google Scholar
  206. 206.
    Babbar, M. M., Statistical Approach in Planning Production Programs for Interdependent Activities, Ph. D. Thesis, Iowa State Univ., Ames, Iowa (1953).Google Scholar
  207. 207.
    Barankin, E. W. and Dorfman, R., On quadratic programming, Univ. Calif. Pubis. Statis., 2 (13): 285–318 (1958).MathSciNetGoogle Scholar
  208. 208.
    Beale, E, M. L., On minimizing a convex function subject to linear inequalities, J. Roy. Statist. Soc., 1’7(2): 173–184 (1955).Google Scholar
  209. 209.
    Beged Dov, A. G., Certianty Equivalency in Stochastic Programming, Tech. Rep., Western Electric Co. (Jan., 1966 ).Google Scholar
  210. 210.
    Boot, J. C. G., Notes on quadratic programming: the Kuhn-Tucker and TheilVan de Panne conditions, degeneracy, and equality constraints, Management Sci., 9 (1): 85–98 (1961).MathSciNetCrossRefGoogle Scholar
  211. 211.
    Boot, J. C. G., On trivial and binding constraints in programming problems, Management Sci., 8 (4): 419–411 (1962).MathSciNetMATHCrossRefGoogle Scholar
  212. 212.
    Boot, J. C. G., Binding constraint procedures of quadratic programming, Econometrica, 31 (3): 464–498 (1963).MATHCrossRefGoogle Scholar
  213. 213.
    Candler, W. and Townsley, R. J., The maximization of a quadratic function of variables subject to linear inequalities, Management Sci., 10 (3): 515–523 (1964).CrossRefGoogle Scholar
  214. 214.
    Charnes, A. and Lemke, C. E., Minimization of nonlinear separable convex functionals, Naval Res. Logist. Quart., 1 (4): 301–312 (1954).MathSciNetCrossRefGoogle Scholar
  215. 215.
    Cole, R., On Stochastic Programming with Special Reference to a Production Smoothing Application, Master’s Thesis, Lehigh Univ. (1964).Google Scholar
  216. 216.
    Cramer, H., Mathematical Methods of Statistics, Princeton Univ. Press, Princeton (1946).Google Scholar
  217. 217.
    Dantzig, G. B., On the status of multistage linear programming problems, Part I: Special cases, Management Sci., 6 (1): 53–72 (1959).MathSciNetMATHGoogle Scholar
  218. 218.
    Dantzig, G. B., Eisenberg, E. and Cottle, R. W., Symmetric dual nonlinear Programs, Pacific J. Math., 15 (3): 809–812 (1965).MathSciNetMATHGoogle Scholar
  219. 219.
    Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York-London (1960), 361 pages; Brit. Nat. Bibliogr., No. 572 (1960).Google Scholar
  220. 220.
    Dorfman, R., Samuelson, P. A. and Solow, R. M., Nonlinear programming, Chapt. 8 in: Linear Programming and Economic Analysis, McGraw-Hill, New York (1958), pp. 186–203.Google Scholar
  221. 221.
    Dorn, W. S., Duality in quadratic programming, Quart. Appl. Math., 18 (2): 155–162 (1960).MathSciNetMATHGoogle Scholar
  222. 222.
    Dorn, W. S., Nonlinear programming -a survey, Management Sci., 9(2): 171–208 (1963).Google Scholar
  223. 223.
    Eisenberg, E., Supports of a convex function, Bull. Amer. Math. Soc., 68 (3): 192–195 (1962).MathSciNetMATHCrossRefGoogle Scholar
  224. Eisenberg, E., Duality in homogeneous programming, Proc. Amer. Math. Soc., 12 (5): 783–787 (1961).MathSciNetMATHCrossRefGoogle Scholar
  225. 225.
    Eisenberg, E., A Note on Semidefinite Matrices, Res. Rep. No. 9, Operations Research Center, Univ. California, Berkeley (1961).Google Scholar
  226. 226.
    Eisenberg, E., Closure of certain quasi-linear convex bodies, Res. Rep. No. 15, Operations Research Center, Univ. California, Berkeley (1961).Google Scholar
  227. 227.
    Fenchel, W., Convex Cones, Sets, and Functions, Princeton Univ. Lecture Notes (Spring, 1963 ).Google Scholar
  228. 228.
    Frank, M. and Wolfe,P., An algorithm for quadratic programming, Naval Res. Logist. Quart., 3 (1–2): 95–110 (1956).MathSciNetCrossRefGoogle Scholar
  229. 229.
    Frechet, M., Recherches Théoriques Modernes sur la Théorie des Probabilités, Paris (1937).Google Scholar
  230. 230.
    Gale, D., The Theory of Linear Economic Models, New York-Toronto-London (1960), 330 pages.Google Scholar
  231. 231.
    Gass, S. I., Linear Programming, Methods and Applications, New York-TorontoLondon (1958), 223 pages.Google Scholar
  232. 232.
    Geoffrion, A. M., An Approach to Strictly-Concave Programming with Linear Constraints,Univ.California (July, 1965 ).Google Scholar
  233. 233.
    Goldman, A. J. and Tucker, A. W., Theory of linear programming, Ann., Math. Studies, No. 38, pp. 53–97 (1956).MathSciNetMATHGoogle Scholar
  234. 234.
    Hartley, H. O., Nonlinear programming by the simplex method, Econometrica, 29 (2): 223–237 (1961).MathSciNetCrossRefMATHGoogle Scholar
  235. 235.
    Hartley, H. O. and Hocking, R. R., Convex programming by tangential approximation, Management Sci., 9: 600–612 (1963).MathSciNetMATHCrossRefGoogle Scholar
  236. 236.
    Houthakker, H. S., The capacity method of quadratic programming, Econometrica, 28: 62–87 (1960).MathSciNetMATHCrossRefGoogle Scholar
  237. 237.
    Huard, P., Dual Programs, IBM J. Res. Develop., 6 (1): 137–139 (1962).MATHCrossRefGoogle Scholar
  238. 238.
    Kall, P., An application of linear and nonlinear programming, Sixth Sympos. Mathematical Programming, London (1964).Google Scholar
  239. 239.
    Karlin, S., Mathematical Methods and Theory in Games, Programming, and Economics, Vol. II: The Theory of Infinite Games, London-Paris (1959), 386 pages.Google Scholar
  240. 240.
    Kuhn, H. W. and Tucker, A. W., Nonlinear programming, Proc. Second Berkeley Sympos. Mathematical Statistics and Probability, Univ. Calif. Press., Berkeley (1951), pp. 481–492.Google Scholar
  241. 241.
    Kushner, H., On the stochastic maximum principle: fixed time of control, J. Math. Anal. Appl. 11 (1–3): 78–92 (1965).MathSciNetMATHCrossRefGoogle Scholar
  242. 242.
    Lemke, C. E., A method of solution for quadratic programs, Management Sci., 8 (4): 442–452 (1962).MathSciNetMATHCrossRefGoogle Scholar
  243. 243.
    Mangasarian, O. L., Duality in Nonlinear Programming, Rep. No. P-1054. Shell Development Co., Emeryville, Calif.Google Scholar
  244. 244.
    Mangasarian, O. L., Equivalence in nonlinear programming, Naval Res. Logist. Quart., 10 (4): 299–306 (1963).MathSciNetMATHCrossRefGoogle Scholar
  245. 245.
    Markowitz, H. M., The optimization of a quadratic function subject to linear constraints, Naval Res. Logist. Quart., 3 (1–2): 111–133 (1956).MathSciNetCrossRefGoogle Scholar
  246. 246.
    McShane, E. J., Jensen’s inequality, Bull. Amer. Math. Soc., 43: 521–527 (1937)MathSciNetGoogle Scholar
  247. 247.
    Miller, B. L. and Wagner, H. M., Chance-constrained programming with joint constraint, Operat. Res., 13 (6): 930–945 (1965).MATHGoogle Scholar
  248. 248.
    Minty, G. J., On the monotonicity of the gradient of a convex function, Pacific J. Math., 14 (1): 243–247 (1964).MathSciNetMATHGoogle Scholar
  249. 249.
    Riley, V. and Gass, S. I., Linear Programming and Associated Techniques, Baltimore (1958), 613 pages.Google Scholar
  250. 250.
    Rosen, J. B., The gradient projection method for nonlinear programming, Part II: Nonlinear constraints, J. Soc. Indust. Appl. Math., 2: 514–532 (1961).Google Scholar
  251. 251.
    Saaty, T. L., Mathematical Methods of Operations Research, New York-London (1959), 421 pages.Google Scholar
  252. 252.
    Shetty, C. M., Sensitivity analysis in linear programming, J. Indust. Engng., 10 (5): 379–386 (1959).Google Scholar
  253. 253.
    Shetty, C. M., Solving linear programming problems with variable parameters, J. Indust. Engng., 10 (6): 433–438 (1959).Google Scholar
  254. 254.
    Thiel, H. and Van de Panne, C., Quadratic programming as an extension of classical quadratic maximization, Management Sci., 7: 1–10 (1960).MathSciNetCrossRefGoogle Scholar
  255. 255.
    Tinnier, G., The theory of choice under subjective risk and uncertainty, Econometrica, 9: 298–303 (1941).CrossRefGoogle Scholar
  256. 256.
    Tinnier, G., The pure theory of production under technological risk and uncertainty, Econometrica, 9: 305–312 (1941).CrossRefGoogle Scholar
  257. 257.
    Tucker, A. W., Linear and nonlinear programming, Operat. Res., 5: 244–257 (1957).Google Scholar
  258. 258.
    Hoang, Tui, Concave programming under linear constraints, Soviet Math., 5 (6): 1437–1440 (1964).Google Scholar
  259. 259.
    Vajda, S., Mathematical Programming (1961), 310 pages; Amer. Book Publ. Rec., 2(9):20(1961).Google Scholar
  260. 260.
    Vajda, S., Nonlinear programming, in: Mathematical Programming, Addison-Wesley, London (1961), pp. 218–244.Google Scholar
  261. 261.
    Wagner, P., A nonlinear extension of the simplex method, Management Sci., 7 (1): 43–55 (1960).MathSciNetCrossRefGoogle Scholar
  262. 262.
    Wilson, R., A primal-dual algorithm for convex programming (abstract), Recent Advances in Mathematical Programming, New York-San Francisco-Toronto -London (1963).Google Scholar
  263. 263.
    Wilson, R., On programming under uncertainty, Operat. Res., 14(4): 652–657 (1966)Google Scholar
  264. 264.
    Wolfe, P., A duality theorem for nonlinear programming, Quart. Appl. Math., 19: 239–244 (1961).Google Scholar
  265. 265.
    Wolfe, P., Computational techniques for nonlinear programs, Princeton Univ. Conf., Princeton (March, 1957 ).Google Scholar
  266. 266.
    Wolfe, P., Some simplex-like nonlinear programming procedures, Operat. Res., 10: 438–447 (1962).MathSciNetMATHGoogle Scholar
  267. 267.
    Wolfe, P., Recent Developments in Nonlinear Programming, The RAND Corp., Rep. R401-Pr (May, 1962 ).Google Scholar
  268. 268.
    Zoutendijk, G., Methods of Feasible Directions, Van Nostrand, New York (1960).MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • V. V. Kolbin

There are no affiliations available

Personalised recommendations