Advertisement

Structures On Differentiable Manifolds

  • A. P. Shirokov
Part of the Progress in Mathematics book series (PM, volume 9)

Abstract

Structures on differentiable manifolds have been very intensively studied in recent years both in differential topology as well as in differential geometry. Along with almost complex structures a systematic examination was begun of almost contact, affinor, symplectic, quaternion, and many other structures, a simple listing of which would take up considerable space. Not all of these structures are of equal value, but there is no doubt that the study of manifolds with various structures is of interest from both the global as well as the local point of view; moreover, for certain structures the possibility was outlined for applying them to various aspects of geometry and mechanics.

Keywords

Tangent Bundle Contact Structure Tensor Field Structure Tensor Area Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. T. Abbasov, “Motion groups and symmetry images in elliptical spaces over alternion algebras,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), pp. 3–4.Google Scholar
  2. 2.
    M. A. Akivis, “The structure of multidimensional surfaces carrying a net of curvature lines,” Dokl. Akad. Nauk SSSR, 149(6): 1247–1249 (1963).MathSciNetGoogle Scholar
  3. 3.
    G. S. Barkhin, “Motion subgroups of a biaxial space,” Uch. Zap. Kazansk. Univ., 111(8): 105–124 (1951).Google Scholar
  4. 4.
    D. V. Beklemishev, “Differential geometry of spaces with an almost-complex structure,” in: Geometry. 1963, Progress in Science, VINITI, Akad. Nauk SSSR, Moscow (1965), pp. 165–212.Google Scholar
  5. 5.
    T. M. Boguslovskaya, “Symmetry images of complex and quaternion semiellip-tic spaces,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), p. 21.Google Scholar
  6. 6.
    R. G. Bukharaev, “Theory of surfaces of a biaffine space and theory of congruences of a biaxial space,” Uch. Zap. Kazansk. Univ., 116(1): 7–9 (1956).Google Scholar
  7. 7.
    R. G. Bukharaev, “On the theory of surfaces in a biaffine space. 1,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 3, pp. 81–92 (1960).Google Scholar
  8. 8.
    V. V. Vishnevskii, “Certain questions in the geometry of B-spaces,” in: Collection of Aspirants’ Papers at Kazan Univ., Exact Sciences, Kazan (1962), pp. 137–147.Google Scholar
  9. 9.
    V. V. Vishnevskii, “A class of Kahlerian spaces,” in: Summaries of the Scient. Conf. at Kazan Univ. in 1961, Math. Sci. Sect., Kazan (1962).Google Scholar
  10. 10.
    V. V. Vishnevskii, “Complex structures in B-spaces,” Uch. Zap. Kazansk. Univ., 123(1): 24–48 (1963).Google Scholar
  11. 11.
    V. V. Vishnevskii, “The Klein-Norden mapping and its application to the line geometry of non-Euclidean spaces,” in: Summaries of the Scient. Conf. at Kazan Univ. in 1962, Math. Sci. Sect., Kazan (1963), pp. 27–30.Google Scholar
  12. 12.
    V. V. Vishnevskii, “Complex structures of a class of Kahler-Rashevskii spaces,” Dokl. Akad. Nauk SSSR, 149(2): 233–236 (1963).MathSciNetGoogle Scholar
  13. 13.
    V. V. Vishnevskii, “A biplanar space connected with the Riemann space V4,” in: Collection of Aspirants’ Papers at Kazan Univ., Math., Mech., Phys., Kazan (1964), pp. 41–45.Google Scholar
  14. 14.
    V. V. Vishnevskii, “A generalization of Shirokov-Rashevskii spaces,” Uch. Zap. Kazansk. Univ., 125(1): 60–73 (1965).Google Scholar
  15. 15.
    V. V. Vishnevskii, “More on complex structures in line geometry,” in: Proc. Seminar Vector Tensor Analysis and Their Applications to Geom., Mech., Phys., Issue 13, Moscow University (1966), pp. 467–492.Google Scholar
  16. 16.
    V. V. Vishnevskii, “A property of analytical functions over algebras and its application to the study of complex structures in Riemann spaces,” Uch. Zap. Kazansk. Univ., 126(1): 5–12 (1966).Google Scholar
  17. 17.
    V. V. Vishnevskii, “On the theory of Riemann spaces over tensor products of algebras,” in: Third. Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967).Google Scholar
  18. 18..
    V. V. Vishnevskii and A. P. Norden, “Complex representation of the invariants of a four-dimensional Riemann space,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 2, pp. 176–182 (1959).Google Scholar
  19. 19.
    L. B. Vyzhgina, “The geometry of commutative algebras,” Uch. Zap. Mosk. Obl. Ped. Inst., 149(1): 67–78 (1964).Google Scholar
  20. 20.
    L. B. Vyzhgina, “Projective spaces over algebras of cyclic, anticyclic, and plural numbers,” Uch. Zap. Mosk. Obl. Ped. Inst., 173(1): 17–25 (1967).Google Scholar
  21. 21.
    V. A. Gaukhman, “Symmetric almost-symplectic affine connections on Hermitian manifolds,” Dokl. Akad. Nauk SSSR, 146(2): 277–280 (1962).MathSciNetGoogle Scholar
  22. 22.
    V. A. Gaukhman, “Γ-structures on principal fiber spaces,” Tr. Tomskogo Univ., 176:20–27 (1964).Google Scholar
  23. 23.
    V. A. Gaukhman, “Diagonalizable almost-tensor structures,” Usp. Mat. Nauk, 19(6): 226–228 (1964).Google Scholar
  24. 24.
    V. W. Guillemin and S. Sternberg, “Algebraic model of a transitive differential geometry,” Bull. Am. Math. Soc, 70(1): 16–47 (1964).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    M. A. Dzhavadov, “Non-Euclidean geometries over algebras of alternions,” Uch. Zap. Kazansk. Gos. Univ., 115(10): 8–9 (1955).Google Scholar
  26. 26.
    M. A. Dzhavadov, “Projective spaces over algebras,” Uch. Zap. Azerb. Univ., No. 2, pp. 3–18 (1957).Google Scholar
  27. 27.
    M. A. Dzhavadov, “Non-Euclidean geometries over algebras,” Uch. Zap. Azerb. Univ., No. 4, pp. 3–16 (1957).Google Scholar
  28. 28.
    M. A. Dzhavadov, “Affine spaces over algebras,” Uch. Zap. Azerb. Univ., No. 7, pp. 3–21 (1957).Google Scholar
  29. 29.
    M. A. Dzhavadov, “Linear congruences in projective spaces over algebras of alternions,” Izv. Akad. Nauk Azerbad.SSR, No. 7, pp. 3–15 (1957).Google Scholar
  30. 30.
    M. A. Dzhavadov, “An application of a non-Euclidean geometry over the algebra of binary matrices to the projective geometry over the algebra of real matrices,” Uch. Zap. Azerb. Univ., Fiz.-Mat. i Khim. Ser., No. 3, pp. 11–16 (1960).Google Scholar
  31. 31.
    M. A. Dzhavadov and N.T. Abbasov, “Bicomplex and biquaternion hyperbolic spaces,” Uch. Zap. Azerb. Univ., Ser. Fiz.-Mat. Nauk, No. 1, pp. 9–15 (1964).Google Scholar
  32. 32.
    I. P. Egorov, “Motions in generalized differential-geometric spaces,” in: R. V. Gamkrelidze (ed.), Progress in Mathematics, Vol. 6: Topology and Geometry, Plenum Press, New York (1970), pp. 00.Google Scholar
  33. 33.
    L. V. Eremina, “The geometry of cosymmetry images,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), p. 53.Google Scholar
  34. 34.
    Yu. B. Ermolaev, “Simultaneous reduction of a pair of bilinear forms to canonical form,” Dokl. Akad. Nauk SSSR, 132(2): 257–259 (1960).MathSciNetGoogle Scholar
  35. 35.
    Yu. B. Ermolaev, “Simultaneous reduction of a symmetric and a Hermitian form,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 2, pp. 10–23 (1961).Google Scholar
  36. 36.
    Yu. B. Ermolaev, “Simultaneous reduction of a pair of bilinear forms to canonical form over an arbitrary perfect field of characteristic ≠ 2,” in: Summaries of the Scient. Conf. at Kazan Univ. in 1962, Math. Sci. Sect., Kazan (1963), pp. 25–27.Google Scholar
  37. 37.
    I. I. Zhelezina, “Quasi-Euclidean line geometry as a complex Euclidean geometry,” Uch. Zap. Mosk. Gos. Ped. Inst., No. 243, pp. 233–240 (1965).Google Scholar
  38. 38.
    I. I. Zhelezina, “Galillean line geometry as a dual Euclidean geometry,” Uch. Zap. Mosk. Gos. Ped. Inst., No. 243, pp. 241–247 (1965).Google Scholar
  39. 39.
    I. V. Zuev, “The real interpretation of the curves on a complex centroaffine plane,” Uch. Zap. Kazansk. Gos. Univ., 115(10): 13–15 (1955).Google Scholar
  40. 40.
    I. V. Zuev, “The real interpretation of the curves on a complex centroaffine plane,” Uch. Zap. Elabuzhsk. Gos. Ped. Inst., 3:17–34 (1958).MathSciNetGoogle Scholar
  41. 41.
    I. V. Zuev, “Straight lines on an algebraic surface with a double Königs net,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 5, pp. 52–61 (1960).Google Scholar
  42. 42.
    I. V. Zuev, “Application of analytic functions to the problem of the straight lines of a surface containing an imaginary double Königs net,” Tr. Kazansk. Aviats. Inst., No. 71, pp. 97–105 (1962).Google Scholar
  43. 43.
    I. V. Zuev, “Cyclotomic integral curves of the equation f (x, y, y’) = 0,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 6, pp. 64–71 (1963).Google Scholar
  44. 44.
    I. V. Zuev, “A class of vector fields,” in: Summaries of the Scient. Conf. at Kazan Univ. in 1963, Math., Cybernet. and Probability Theory, Mech. Sect., Kazan (1964), pp. 34–35.Google Scholar
  45. 45.
    I.V. Zuev, “A class of solenoidal fields,” in: Summaries of the Scient. Conf. at Kazan Univ. in 1963, Math., Cybernet. and Probability Theory, Mech. Sect., Kazan (1964), pp. 35–36.Google Scholar
  46. 46.
    I. V. Zuev, “A class of differential equations,” in: Summaries of the Scient. Conf. at Kazan Univ. in 1963, Math., Cybernet. and Probability Theory, Mech. Sect., Kazan (1964), p. 37.Google Scholar
  47. 47.
    I. V. Zuev, “On the geometry of the zeros and poles of a rational function,” in: Summaries of the Scient. Conf. at Kazan Univ. in 1963, Math., Cybernet. and Probability Theory, Mech. Sect., Kazan (1964).Google Scholar
  48. 48.
    I. V. Zuev, “A biaxial invariant of a ruled surface,” Uch. Zap. Kazansk. Univ., 125(1): 74–78 (1965).MathSciNetMATHGoogle Scholar
  49. 49.
    I. V. Zuev, “A class of flat vector fields,” Uch. Zap. Kazansk. Univ., 125(1): 79–87 (1965).MathSciNetMATHGoogle Scholar
  50. 50.
    I. V. Zuev, “On the Lagrange equation,” Uch. Zap. Kazansk. Univ., 125(1): 88–99(1965).MathSciNetMATHGoogle Scholar
  51. 51.
    M. A. Ivanova, “Fields of parallel area elements in a pseudo-Riemann space,” Uch. Zap. Arkhang. Gos. Ped. Inst., No. 4, pp. 85–109 (1959).Google Scholar
  52. 52.
    G. E. Izotov, “The joint reduction of a quadratic and a Hermitian form,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 1, pp. 143–159 (1957).Google Scholar
  53. 53.
    G. E. Izotov, “Second-order surfaces of a biplanar space,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 1, pp. 89–102 (1958).Google Scholar
  54. 54.
    F. I. Kagan, “Tensors in tangent bundles,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), pp.71–72.Google Scholar
  55. 55.
    L. M. Karpova, “Semi-Riemann symmetric spaces over algebras,” Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Tekh. i Mat. Nauk, No. 4, pp. 45–49 (1964).Google Scholar
  56. 56.
    S. S. Kasimova, “Quadri-quaternion hyperbolic spaces,” Uch. Zap. Azerb. Univ., Ser. Fiz.-Mat. Nauk, No. 4, pp. 19–23 (1963).Google Scholar
  57. 57.
    S. S. Kasimova,” Quadri-quaternion symplectic spaces,” Uch. Zap. Azerb. Univ., Ser. Fiz.-Mat. Nauk, No. 2, pp. 48–55 (1964).Google Scholar
  58. 58.
    S. S. Kasimova, “Euclidean spaces over the algebra of real matrices,” Uch. Zap. Azerb. Univ., Ser. Fiz.-Mat. Nauk, No. 2, pp. 68–73 (1966).Google Scholar
  59. 59.
    S. S. Kasimova, “Quasi-Euclidean spaces over the algebra of real matrices,” Izv. Akad. Azerbad.SSR, Ser. Fiz.-Tekh. i Mat. Nauk, No. 4, pp. 16–22 (1966).Google Scholar
  60. 60.
    S.S. Kasimova, L. M. Ezhovo-Guseva, and N. D. Zablotskikh, “Dimensions of manifolds of tangent planes of Hermitian quadrics and of planes intersecting with the corresponding planes in Hermitian null-systems, in spaces over algebras,” Uch. Zap. Azerb. Univ., Ser. Fiz.-Mat. Nauk, No. 5, pp. 27–32 (1966).Google Scholar
  61. 61.
    S.S. Kasimova, “Limit non-Euclidean and symplectic spaces over the algebra of real matrices,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), pp. 75–76.Google Scholar
  62. 62.
    V. V. Kolyan, “On the theory of curves of a composition space,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 3, pp. 43–55 (1968).Google Scholar
  63. 63.
    A. L. Krišciūnaitė, “Almost-contact structures and their analogs,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), p. 83.Google Scholar
  64. 64.
    A. L. Krišciūnaitė, “Almost-contact structures on the hypersurfaces of a four-dimensional centrobiaffine space of elliptic and hyperbolic type,” Litovsk. Mat. Sb., 7(3): 423–438 (1967).MathSciNetGoogle Scholar
  65. 65.
    G.I. Kruchkovich and A. S. Solodovnikov, “Constant symmetric tensors in Riemann spaces,” Izv. Vysshikh. Uchebn. Zavedenu, Matematika, No. 3, pp. 147–158(1959).Google Scholar
  66. 66.
    L.N. Kuznetsova, “Automorphisms of pairs of null-systems in a complex projective space,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), p. 88.Google Scholar
  67. 67.
    B. L. Laptev, “Petr Alekseevich Shirokov. Survey of published papers,” in: P. A. Shirokov, Selected Papers on Geometry, Kazan University, Kazan (1966), 432 pp.Google Scholar
  68. 68.
    G. F. Laptev, “Manifolds immersed in generalized spaces,” in: Proc. Fourth All-Union Math. Congr., Vol. 2, “Nauka,” Leningrad (1964), pp. 226–233.Google Scholar
  69. 69.
    G. F. Laptev, “Basic higher-order infinitesimal structures on a smooth manifold,” in: Proc. Geom. Seminar, Inst. Nauchn. Inform. Akad. Nauk SSSR, 1:139–189 (1966).Google Scholar
  70. 70.
    V. G. Lemlein, “Spaces of symmetric almost-symplectic connection,” Dokl. Akad. Nauk SSSR, 115(4): 655–658 (1957).MathSciNetMATHGoogle Scholar
  71. 71.
    V. G. Lemlein, “The curvature tensor and certain types of spaces of symmetric almost-symplectic connection,” Dokl. Akad. Nauk SSSR, 117(5): 755–758 (1957).MathSciNetGoogle Scholar
  72. 72.
    E. K. Leonťev, “On Chebyshev compositions,” Uch. Zap. Kazansk. Univ., 126(1): 23–40 (1966).Google Scholar
  73. 73.
    E. K. Leonťev, “On the general theory of compositions in spaces of affine-connection,” in: Summaries Scient. Aspirants Conf. at Kazan Univ. in 1965, Math., Mech. (reports abstracts), Kazan (1967), pp. 26–28.Google Scholar
  74. 74.
    E. K. Leonťev, “The classification of special sheaves and compositions of multidimensional spaces,” Izv. Vysshikh. Uchebn. Zavedenu, Matematika, No. 5, pp. 40–51 (1967).Google Scholar
  75. 75.
    L. B. Lobanova, “Non-Euclidean spaces over algebras of cyclic, anticyclic, and plural numbers,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), pp. 98–99.Google Scholar
  76. 76.
    L. M. Markina, “Dual non-Euclidean spaces,” in: Third Interuniv. Scient. Cong. Prob. Geom. (report abstracts), Kazan (1967), p. 110.Google Scholar
  77. 77.
    L. A. Matevosyan, “Surfaces in reducible spaces,” Aikakan SSR Gitutyunneri Akademian Tegekagir, Matematika, 1(6): 374–391 (1966).MATHGoogle Scholar
  78. 78.
    L. A. Matevosyan, “A class of surfaces in reducible spaces,” Aikakan SSR Gitutyunneri Akademian Tegekagir, Matematika, 2(2): 83–89 (1967).MATHGoogle Scholar
  79. 79.
    E. G. Neifel’d, “The geometry of Appell space,” in: Collections of Aspirants’ Papers at Kazan Univ., Exact Sciences, Kazan (1962), pp. 148–157.Google Scholar
  80. 80.
    E. G. Neifel’d, “The geometry of conformai-Appell space,” Uch. Zap. Kazansk. Univ., 123(1): 128–140 (1963).MathSciNetGoogle Scholar
  81. 81.
    E. G. Neifel’d, “Normalized space over the complex number field and its generalizations,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), p. 122.Google Scholar
  82. 82.
    L. S. Nikitina, “Semi-antiquaternion projective geometry,” in: Third Interuniv. Scient. Conf. Prob. Geom. (reports abstracts), Kazan (1967), p. 122.Google Scholar
  83. 83.
    A. P. Norden, “Zero-curvature surfaces of a biaxial space,” Dokl. Akad. Nauk SSSR, 58:1597–1600 (1947).MathSciNetMATHGoogle Scholar
  84. 84.
    A. P. Norden, “Space of linear congruence,” Mat. Sb., 24:429–455 (1949).MathSciNetGoogle Scholar
  85. 85.
    A. P. Norden, “A biaffine space and its mapping onto itself,” Uch. Zap. Kazansk. Univ., 112(10): 3–11 (1952).MathSciNetGoogle Scholar
  86. 86.
    A. P. Norden, “Theory of curves of a biaffine space,” Uch. Zap. Kazansk. Univ., 112(10): 13–26 (1952).MathSciNetGoogle Scholar
  87. 87.
    A. P. Norden, “Self-conjugate images of a biaxial space,” Uch. Zap. Kazansk. Univ., 114(2): 3–12 (1954).MathSciNetGoogle Scholar
  88. 88.
    A. P. Norden, “Theory of surfaces of a biaffine space,” Uch. Zap. Kazansk. Univ., 114(2): 13–28 (1954).MathSciNetGoogle Scholar
  89. 89.
    A. P. Norden, “Complex representation of the tensors of a biplanar space,” Uch. Zap. Kazansk. Univ., 114(8):45–53 (1954).MathSciNetGoogle Scholar
  90. 90.
    A. P. Norden, “The geometry of biaxial and biaffine spaces,” Uch. Zap. Kazansk. Gos. Univ., 115(10): 12 (1955).Google Scholar
  91. 91.
    A. P. Norden, “The method of normalization and its applications to the geometry of affinely connected spaces,” in: Proc. Third All-Union Math. Congr., 1956, Vol. 3, Akad. Nauk SSSR, Moscow (1958), pp. 418–423.Google Scholar
  92. 92.
    A. P. Norden, “Geometric interpretation of certain concepts of spinor analysis,” in: Proc. Third All-Union Math. Congr., Vol. 1, Akad. Nauk SSSR, Moscow (1956), p. 160.Google Scholar
  93. 93.
    A. P. Norden, “Complex representation of the tensors of a Lorentz space,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 1, pp. 156–163 (1959).Google Scholar
  94. 94.
    A. P. Norden, “A class of four-dimensional A-spaces,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 4, pp. 145–157 (1960).Google Scholar
  95. 95.
    A. P. Norden, “A class of minimal surfaces of a four-dimensional space,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 3, pp. 91–97 (1962).Google Scholar
  96. 96.
    A. P. Norden, “Certain possible directions of development of line geometry,” Uch. Zap. Kazansk. Univ., 123(1): 141–151 (1963).MathSciNetGoogle Scholar
  97. 97.
    A. P. Norden, “Spaces of Cartesian Composition,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 4, pp. 117–128 (1963).MathSciNetGoogle Scholar
  98. 98..
    A. P. Norden, “Biaxial geometry and its generalizations,” in: Proc. Fourth All-Union Math. Congr., 1961, Vol. 2, “Nauka,” Leningrad (1964), pp. 236–243.Google Scholar
  99. 99.
    S. L. Levzner, “The geometry of a pair of quadrics in a projective space,” in: Third Interuniv. Scient. Conf. Prob. Geom. (reports abstracts), Kazan (1967), pp. 127–128.Google Scholar
  100. 100.
    D. B. Persits, “Octave geometries,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), p. 129.Google Scholar
  101. 101.
    B. Petkanchin, “An elliptic system of lines in a biaxial geometry,” Izv. Mat. Inst., Bulgar. Akad. Nauk, 2(2): 136–161 (1957).Google Scholar
  102. 102.
    B. Petkanchin, “A hyperbolic system of lines in a parabolic biaxial geometry,” Godishnik Sofiisk. Univ. Mat. Fak., 58:171–194 [1963–1964 (1965)].Google Scholar
  103. 103.
    N. D. Petsko, “Projective metrizations and complex numbers,” Uch. Zap. Kolomensk. Ped. Inst., 8:127–143 [1964 (1965)].Google Scholar
  104. 104.
    N. D. Petsko, “Biquaternion elliptic spaces and their application to real geometries. Projective metrics,” Uch. Zap. Kolomensk. Ped. Inst., 8:144–164 [1964 (1965)].Google Scholar
  105. 105.
    N. M. Pisareva, “Symmetric, almost-reducible, and reducible Weyl spaces,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 6, pp. 137–142 (1964).MathSciNetGoogle Scholar
  106. 106.
    N. M. Pisareva, “Almost-reducible and symmetric almost-reducible spaces of affine connection,” Mat. Sb., 66(1): 119–126 (1965).MathSciNetGoogle Scholar
  107. 107.
    N. M. Pisareva, “Affinely connected spaces admitting of a transitive motion group whose stationary linear subgroup is completely reducible,” Mat. Sb., 68(1): 75–80 (1965).MathSciNetGoogle Scholar
  108. 108.
    A. S. Podkovyrin, “A class of four-dimensional minimal surfaces of a six-dimensional biaffine space,” in: Materials Scient. Conf. Kazan State Pedagogical Inst., 1962, Kazan (1963), pp. 427–429.Google Scholar
  109. 109.
    A. S. Podkovyrin, “A class of four-dimensional minimal surfaces in a six-dimensional biaffine space,” Volzhsk. Mat. Sb., No. 2, pp. 245–250 (1964).MathSciNetGoogle Scholar
  110. 110.
    A. S. Podkovyrin, “Minimal X4 of the space B6, admitting of a mapping onto developable X2 of a complex A3,” Uch. Zap. Kazansk. Univ., 125(1): 121–129 (1965).MathSciNetMATHGoogle Scholar
  111. 111.
    A. S. Podkovyrin, “A class of minimal surfaces of a six-dimensional space,” KVKIU, Trudy Ychilishcha, Issue 1, Kazan (1967).Google Scholar
  112. 112.
    A. S. Podkovyrin, “Hypersurfaces of a unitary space. I,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 8, pp. 41–52 (1967).MathSciNetGoogle Scholar
  113. 113.
    A. S. Podkovyrin, “Hypersurfaces of a unitary space. II,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 9, pp. 75–85 (1967).MathSciNetGoogle Scholar
  114. 114.
    M. Prvanovich, “Riemann extensions as generalized biplanar spaces,” Publ. Inst. Math., 6:9–16 (1966).Google Scholar
  115. 115.
    M. Rakhula, “On a higher-order differential geometry,” Tartu Ulikooli Toimetised, Issue 150, pp. 122–131 (1964).Google Scholar
  116. 116.
    P. K. Rashevskii, Geometric Theory of Differential Equations, Moscow (1947).Google Scholar
  117. 117.
    P. K. Rashevskii, “Scalar field in fiber space,” in: Proc. Seminar Vector Tensor Analysis, Issue 6, pp. 225–248 (1948).Google Scholar
  118. 118.
    B. A. Rozenfel’d, Non-Euclidean Geometries, Gostekhizdat, Moscow (1955), 744 pp.Google Scholar
  119. 119.
    L. V. Rumyantseva, “Quaternion symplectic geometry,” in: Proc. Seminar Vector Tensor Analysis with Appl. to Geom., Mech., Phys., Issue 12, Moscow University (1963), pp. 287–314.Google Scholar
  120. 120.
    L. V. Rumyantseva, “Quadriquaternion elliptic spaces,” Uch. Zap. Azerb. Univ., Ser. Fiz.-Mat. Nauk, No. 3, pp. 35–38 (1963).Google Scholar
  121. 121.
    L. V. Sabinin, “The geometry of subsymmetric spaces,” Nauchn. Dokl. Vysshikh. Shkoly, Fiz.-Mat. Nauk, No. 3, pp. 46–49 (1958).Google Scholar
  122. 122.
    L. V. Sabinin, “The structure of the motion groups of uniform Riemann spaces with axial symmetry,” Nauchn. Dokl. Vysshikh. Shkoly, Fiz.-Mat. Nauk, No. 6, pp. 127–138 (1958).Google Scholar
  123. 123.
    L. V. Sabinin, “Geometry of trisymmetric Riemann spaces,” Sibirsk. Mat. Zh., 2(2): 266–278 (1961).MathSciNetMATHGoogle Scholar
  124. 124.
    I. N. Semenova, “Symmetry images in binary Hermitian quasielliptic spaces,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), pp. 149–150.Google Scholar
  125. 125.
    G. Stanilov, “Geometric interpretation of certain differential invariants of one-parameter systems of lines in a biaxial geometry,” Izv. Mat. Inst., Bulgar. Akad. Nauk, 6:95–99(1962).Google Scholar
  126. 126.
    G. Stanilov, “Minimal lines in a biaxial geometry,” Fiz.-Mat. Spisanie, 7(1): 51–53 (1964).MathSciNetGoogle Scholar
  127. 127.
    G. Stanilov and Yu. B. Ivanov, “Geometric interpretations of certain differential forms and invariants in the biaxial theory of surfaces,” Dokl. Bulgar. Akad. Nauk, 18(7): 601–602 (1965).MathSciNetMATHGoogle Scholar
  128. 128.
    N. E. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, N. J. (1951).MATHGoogle Scholar
  129. 129.
    N. V. Talantova, “Biaxial space of parabolic type,” Uch. Zap. Kazansk. Univ., 117(9): 30–34 (1957).Google Scholar
  130. 130.
    N. V. Talantova, “Biaxial space of parabolic type,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 3, pp. 214–228 (1959).MathSciNetGoogle Scholar
  131. 131.
    N. V. Talantova, “One-term motion subgroups of a biaxial space of parabolic type,” Tr. Kazansk. Aviats. Inst., No. 68, pp. 21–33 (1962).Google Scholar
  132. 132.
    N. V. Talantova, “Null-conjugate images of a biaxial space of parabolic type,” Uch. Zap. Kazansk. Univ., 123(1): 152–171 (1963).MathSciNetGoogle Scholar
  133. 133.
    N. V. Talantova, “Classification of the subgroups of the motion group of a biaxial space of parabolic type,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), p. 165.Google Scholar
  134. 134.
    T. Temirov, “Developable direction field and motions in affinely connected spaces,” Tr. Samarkandsk. Univ., No. 151, pp. 127–138 (1964).Google Scholar
  135. 135.
    V. D. Tret’yakov, “On the theory of curves of a biaxial space,” Uch. Zap. Kazansk. Univ., 115(10): 15–16 (1955).MathSciNetGoogle Scholar
  136. 136.
    M. M. Tsalenko, “Flag structures,” Uch. Zap. Mosk. Gos. Ped. Inst., No. 243, pp. 186–191 (1965).Google Scholar
  137. 137.
    M. M. Tsalenko, “Differentiable manifolds with a tensor structure,” Usp. Mat. Nauk, 22(1)-.173–176 (1967).Google Scholar
  138. 138.
    Ya. L. Shapiro, “Several path systems imbedded in a Riemann space,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 3, pp. 166–172 (1963).Google Scholar
  139. 139.
    B. N. Shapukov, “Invariant manifold of a bilinear metric space,” Uch. Zap. Kazansk. Univ., 125(1): 141–160 (1965).MATHGoogle Scholar
  140. 140.
    L. V. Shestyreva, “Symmetry images in a three-dimensional quaternion symplec-tic space,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), pp. 192–193.Google Scholar
  141. 141.
    A. P. Shirokov, “A property of covariantly constant affinors,” Dokl. Akad. Nauk SSSR, 102(3): 461–464 (1955).MathSciNetMATHGoogle Scholar
  142. 142.
    A. P. Shirokov, “A class of spaces over algebras,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 1, pp. 163–170 (1961).Google Scholar
  143. 143.
    A. P. Shirokov, “Certain real realizations of spaces over algebras,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 5, pp. 117–127 (1961).Google Scholar
  144. 144.
    A. P. Shirokov, “Classification of the motion groups of a biaxial space of elliptic type,” Uch. Zap. Kazansk. Univ., 123(1): 208–221 (1963).Google Scholar
  145. 145.
    A. P. Shirokov, “Spaces over associative unital algebras,” Uch. Zap. Kazansk. Univ., 123(1): 222–247 (1963).Google Scholar
  146. 146.
    A. P. Shirokov, “Symmetric spaces defined by algebras,” Izv. Vysshikh. Uchebn. Zavedenii, Matematika, No. 6, pp. 159–171 (1963).Google Scholar
  147. 147.
    A. P. Shirokov, “On the theory of spaces defined by commutative algebras,” Uch. Zap. Kazansk. Univ., 125(1): 165–182 (1965).MATHGoogle Scholar
  148. 148.
    A. P. Shirokov, “A type of G-structure defined by algebras,” in: Proc. Geom. Seminar, Inst. Sci. Inform. Akad. Nauk SSSR, 1:425–456 (1966).Google Scholar
  149. 149.
    A. P. Shirokov, “Symmetric spaces defined by fourth-order commutative algebras,” Uch. Zap. Kazansk. Univ., 126(1): 60–80 (1966).MATHGoogle Scholar
  150. 150.
    A. P. Shirokov, “On pure tensors and invariant subspaces in manifolds with almost-algebraic structure,” Uch. Zap. Kazansk. Univ., 126(1): 81–89 (1966).MATHGoogle Scholar
  151. 151.
    R. N. Shcherbakov, “Differential line geometry of a three-dimensional space,” in: R. V. Gamkrelidze (ed.), Progress in Mathematics, Vol. 6: Topology and Geometry, Plenum Press, New York (1970), pp.Google Scholar
  152. 152.
    I. M Yaglom, “Some algebraic peculiarities of a real symplectic space,” in: Proc. Third All-Union Math. Congr., Vol. 1, Akad. Nauk SSSR, Moscow (1956), pp. 40–41.Google Scholar
  153. 153.
    I. M. Yaglom, Complex Numbers and Their Application in Geometry, Fizmatgiz, Moscow (1963), p. 192.Google Scholar
  154. 154.
    E. U. Yasinskaya, “Metric invariants of linear complexes of real non-Euclidean and seminon-Euclidean spaces and Hermitian quadrics and linear complexes of Hermitian non-Euclidean and seminon-Euclidean spaces,” in: Third Interuniv. Scient. Conf. Prob. Geom. (report abstracts), Kazan (1967), p. 199.Google Scholar
  155. 155.
    T. Adati, “On a Riemannian space admitting a field of planes,” Tensor, 14: 60–67 (1963).MathSciNetMATHGoogle Scholar
  156. 156.
    T. Adati and A. Kandatu, “On a Riemannian space with a field of null planes,” Math. Japon., Vol. 7 (May): 95–102 (1962).MathSciNetMATHGoogle Scholar
  157. 157.
    H. Akbar-Zadeh, “Sur les automorphismes de certaines structures presque cosymplectiques,” Can. Math. Bull., 8(1): 39–57 (1965).MathSciNetMATHCrossRefGoogle Scholar
  158. 158.
    H. Akbar-Zadeh and E. Bonan, “Structure presque kahlérienne naturelle sur le fibre tangent à une variété fins1érienne,” Compt. Rend. Acad. Sci., 258(23): 5581–5582 (1964).MathSciNetMATHGoogle Scholar
  159. 159.
    M. Ako, “Nonlinear connection in vector bundles,” Kodai Math. Sem. Repts., 18(4): 307–316 (1966).MathSciNetMATHCrossRefGoogle Scholar
  160. 160.
    A. Aragnol, “Connexions euclidiennes canoniquement associées à certaines structures presque — produit,” Compt. Rend. Acad. Sci., 242(3):339–341 (1956).MathSciNetMATHGoogle Scholar
  161. 161.
    M. Badea, “Spatii A3 cu connexiune affina constata, local euclidiene si al-gebrele asociate,” Studii Si Cercetǎri Mat. Acad. RPR, 9(2): 559–590 (1958).MathSciNetMATHGoogle Scholar
  162. 162.
    M. Badea, “Spatii A3 cu conexiune afinǎ constantǎ local euclidiene si al-gebrele asociate,” Lucrǎrile Consf. Geometrie Si Topol. 1958. Bucuresti, Acad. RPR, pp. 153–158 (1962).Google Scholar
  163. 163.
    C. de Barras, -Variétés hor — symplectiques,” Compt. Rend. Acad. Sci., 259(6): 1291–1294 (1964).Google Scholar
  164. 164.
    C. de Barras, “Variétés presque hor-complexes,” Compt. Rend. Acad. Sci., 260(6): 1543–1546 (1965).Google Scholar
  165. 165.
    D. Bernard, “Sur la structure des pseudogroupes de Lie,” Compt. Rend. Acad. Sci., 239(20): 1263–1265 (1954).MathSciNetMATHGoogle Scholar
  166. 166.
    D. Bernard, “Sur les G-structures complexes,” Compt. Rend. Acad. Sci., 243(23): 1821–1824 (1956).MathSciNetMATHGoogle Scholar
  167. 167.
    D. Bernard, “Définition globale du tenseur de structure d’une G-structure,” Compt. Rend. Acad. Sci., 247(19): 1546–1549 (1958).MathSciNetMATHGoogle Scholar
  168. 168.
    D. Bernard, “Sur la géométrie différentielle des G-structures,” Ann. Inst. Fourier, 10:151–270 (1960).MathSciNetMATHCrossRefGoogle Scholar
  169. 169.
    E. Bonan, “Structures presque quaternioniennes,” Compt. Rend. Acad. Sci., 258:792–795 (1964).MathSciNetMATHGoogle Scholar
  170. 170.
    E. Bonan, “Connexions presque quaternioniennes,” Compt. Rend. Acad. Sci., 258(6): 1696–1699 (1964).MathSciNetMATHGoogle Scholar
  171. 171.
    E. Bonan, “Structures presque hermitiennes quaternioniennes,” Compt. Rend. Acad. Sci., 258(7): 1988–1991 (1964).MathSciNetMATHGoogle Scholar
  172. 172.
    E. Bonan, “Tenseur de structure d’une variété presque quaternionienne,” Compt. Rend. Acad. Sci., 259(1): 45–48 (1964).MathSciNetMATHGoogle Scholar
  173. 173.
    E. Bonan, “Structure presque quaternale sur une variété différentiable,” Compt. Rend. Acad. Sci., 260(21): 5445–5448 (1965).MathSciNetMATHGoogle Scholar
  174. 174.
    W. Boothby, “Homogeneous complex contact manifolds,” Different Creow Providence, R. I., Am. Math. Soc. (1961), pp. 144–54.Google Scholar
  175. 175.
    W. Boothby and H. C. Wang, “On contact manifolds,” Ann. Math., 68(3): 721–734 (1958).MathSciNetMATHCrossRefGoogle Scholar
  176. 176.
    F. Brickell and R. S. Clark, “Conformally Riemannian structures. I,” Bull. Soc. Math. France, 90(1): 15–26 (1962).MathSciNetMATHGoogle Scholar
  177. 177.
    F. Brickell and R.S. Clark, “Conformally Riemannian structures. II,” Bull. Soc. Math. France, 90(1): 27–38 (1962).MathSciNetGoogle Scholar
  178. 178.
    M. Bruni, “Relazioni tra metrica euclidea ed hermitiana in uno spazio vettoriale quaternionale,” Atti Accad. Naz. Lincei. Rend. C1. Sci. Fis., Mat. Natur., 38(4): 488–491 (1965).MathSciNetMATHGoogle Scholar
  179. 179.
    M. L. Bruschi, “Un théorème de décomposition pour les variétés cosymplectiques homogenes,” Compt. Rend. Acad. Sci., 257(26): 4120–4121 (1963).MathSciNetMATHGoogle Scholar
  180. 180.
    E. Cartan, “Sur la structure des groupes infinis de transformations,” Ann. Ecole Normale, 21:153–206 (1904); 21:219–308 (1905).MathSciNetGoogle Scholar
  181. 181.
    E. Cartan, “La structure des groupes infinis,” in: Oeuvres Complètes, Paris (1953), Vol. II, pp. 1335–1358.Google Scholar
  182. 182.
    C. Cattaneo, “Proiezioni naturali e derivazione transversa in una varietà riemanniana a metrica iperbolica normale,” Ann. Mat. Pura ed Appl., 48:361–386 (1959).MathSciNetMATHCrossRefGoogle Scholar
  183. 183.
    C. Cattaneo, “Dèrivation transverse et grandeurs relatives en relativité générale,” Compt. Rend. Acad. Sci., 248(2): 197–199 (1959).MathSciNetMATHGoogle Scholar
  184. 184.
    C. Cattaneo, “Principi di conservazione e teoremi di Gauss in relatività generale,” Rend. Mat. e Applic, 21(3–4):373–405 (1962).MathSciNetGoogle Scholar
  185. 185.
    I. Cattaneo-Gasparini, “Connessioni adattate a una struttura quasi prodotto,” Ann. Mat. Pura ed Appl., 64:133–150 (1963).MathSciNetGoogle Scholar
  186. 186.
    I. Cattaneo-Gasparini, “Dérivée covariante ‘liée’ dans une Vn + 1 riemannienne à structure presque produit,” Compt. Rend. Acad. Sci., 256(10): 2089–2091 (1963).MathSciNetMATHGoogle Scholar
  187. 187.
    I. Cattaneo-Gasparini, “Proiezioni dei tensori du curvatura di una varietà riemanniana a metrica iperbolica normale,” Rend. Mat. e Applic, 22(1): 127–146 (1963).MathSciNetMATHGoogle Scholar
  188. 188.
    I. Cattaneo-Gasparini, “Struttura metrica adattata a una struttura quasi prodotto,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur., 36(5): 623–628 (1964).MathSciNetGoogle Scholar
  189. 189.
    I. Cattaneo-Gasparini, “Sulle G-strutture di una Vn definite da una 11-formo complessa a valori vettoriali,” Ann. Mat. Pura ed Appl., 65: 81–96 (1964).MathSciNetCrossRefGoogle Scholar
  190. 190.
    I. Cattaneo-Gasparini, “Su una condizione necessaria per l’esistenza globale di un campo di r-piani su una varietà differenziabile,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur, 42(5): 634–639 (1967).MathSciNetMATHGoogle Scholar
  191. 191.
    B. Cenkl, “On the G-structure of higher order,” Casop. Pestov. Mat., 90(1): 26–32 (1965).MathSciNetMATHGoogle Scholar
  192. 192..
    Shiing-shen Chern, “Pseudo-groupes continus infinis,” in: Colloq. Internat. Centre Nat. Rech. Scient. 52, Strasbourg, 1953, Paris (1953), pp. 119–136.Google Scholar
  193. 193.
    Shiing-shen Chern, “On a generalization of Kähler geometry,” in: Algebra, Geometry, and Topology, Princeton University Press, Princeton, N. J. (1957), pp. 103–121.Google Scholar
  194. 194.
    Shiing-shen Chern, “Sur les métriques riemanniennes compatibles avec une réduction du groupe structural,” Semin. Topol. et Géom. Différent. Ch. Ehresmann. Fac. Sci. Paris, 1958–1960 (1961).Google Scholar
  195. 195.
    H. Chu and S. Kobayashi, “The automorphism group of a geometric structure,” Trans. Am. Math. Soc, 113(1): 141–150 (1964).MathSciNetMATHCrossRefGoogle Scholar
  196. 196.
    R. S. Clark, “Special geometric object fields on a differentiate manifold,” Tensor, 13:60–70(1963).Google Scholar
  197. 197.
    R. S. Clark and M. R. Bruckheimer, “Sur les structures presque tangentes,” Compt. Rend. Acad. Sci., 251(5): 627–629 (1960).MathSciNetMATHGoogle Scholar
  198. 198.
    R. S. Clark and M. R. Bruckheimer, “Tensor structures on a differentiable manifold,” Ann. Math. Pura ed Appl., 54:123–141 (1961).MathSciNetMATHCrossRefGoogle Scholar
  199. 199..
    A. Crumeyrolle, “Variétés différentiables à coordonnées hypercomplexes. Application à une géométrisation et à une généralisation de la théoriè d’Einstein-Schrodinger,” Ann. Fac. Sci. Univ. Toulouse Sci. Math. et Sci. Phys., 26:105–137 [1962 (1964)].Google Scholar
  200. 200.
    P. Dazord, “Tenseur de structure d’une G-structure dérivée,” Compt. Rend. Acad. Sci., 258(10): 2730–2733 (1964).MathSciNetMATHGoogle Scholar
  201. 201.
    R. Debever, “Connexions métriques et champs d’éléments plans paralléles dans les variétés quatre dimensions,” Bull. C1. Sci. Acad. Roy. Belg., 44(1): 56–61 (1958).MathSciNetMATHGoogle Scholar
  202. 202.
    J. Depunt, “Sur la géométrie ternionienne dans le plan,” Bull. Soc. Math. Belg., 11(2): 123–133 (1959).MathSciNetMATHGoogle Scholar
  203. 203.
    P. Dombrowski, “On the geometry of the tangent bundle,” J. Reine und Angew. Math., 210(1–2): 73–88 (1962).MathSciNetMATHGoogle Scholar
  204. 204.
    Vincent P. Droz, “Sur certaines structures résultant de la notion d’échangeabilité,” Compt. Rend. Acad. Sci., 262(26): A1484–A1487 (1966).Google Scholar
  205. 205.
    C. Ehresmann, “Espaces fibrés de structures comparatables,” Académie des Sciences, Paris, Compt. Rend. Acad. Sci., 214:141–147 (1942).MathSciNetGoogle Scholar
  206. 206.
    C. Ehresmann, “Les prolongements d’une variété différentiable. I. Calcul des jets, prolongement principal,” Compt. Rend. Acad. Sci., 233: 598–600 (1951).MathSciNetMATHGoogle Scholar
  207. 207.
    C. Ehresmann, “Les prolongements d’une variété différentiable. II, L’espace des jets d’ordre r de Vn dans Vm,” Compt. Rend. Acad. Sci., 233: 777–779 (1951).MathSciNetGoogle Scholar
  208. 208.
    C. Ehresmann, “Les prolongements d’une variété différentiable. III. Transitivité des prolongements,” Compt. Rend. Acad. Sci., 233:1081–1083 (1951).MathSciNetGoogle Scholar
  209. 209.
    C. Ehresmann, “Les prolongements d’une variété différentiable. IV. Élements de contact et éléments d’enveloppe,” Compt. Rend. Acad. Sci., 234:1028–1030 (1952).MathSciNetMATHGoogle Scholar
  210. 210.
    C. Ehresmann, “Les prolongements d’une variété différentiable. V. Covariants différentiels et prolongements d’une structure infinitésimale,” Compt. Rend. Acad. Sci., 234:1124–1425 (1952).Google Scholar
  211. 211.
    C. Ehresmann, “Structures locales et structures infinitésimales,” Compt. Rend. Acad. Sci., 234: 587–589 (1952).MathSciNetMATHGoogle Scholar
  212. 212.
    C. Ehresmann, “Sur les structures infinitésimales réguliéres,” in: Proc. Internat. Congr. Mathematicians, 1954, Amsterdam, Vol. 1, Croningen, Amsterdam (1957).Google Scholar
  213. 213.
    H. A. Eliopoulos, “Structures presque tangentes sur les variétés différentiables,” Compt. Rend. Acad. Sci., 255(14): 1563–1565 (1962).MathSciNetGoogle Scholar
  214. 214.
    H.A. Eliopoulos, “Euclidean structures compatible with almost-tangent structures,” Bull. Cl. Sci. Acad. Roy. Belg., 50(10): 1174–1182 (1964).MathSciNetMATHGoogle Scholar
  215. 215.
    H.A. Eliopoulos, “On the general theory of differentiable manifolds with almost-tangent structure,” Can. Math. Bull., 8(6): 721–748 (1965).MathSciNetMATHCrossRefGoogle Scholar
  216. 216.
    H. A. Eliopoulos, “Structures r-tangentes sur les variétés différentiables,” Compt. Rend. Acad. Sci., 263(13): A413–A416 (1966).MathSciNetGoogle Scholar
  217. 217.
    A. Frölicher and A. Nijenhuis, “Theory of vector-valued differential forms. Part I. Derivations in the graded ring of differential forms,” Proc. Koninkl. Ned. Akad. Wetenschap., A59(3): 338–359 (1956).Google Scholar
  218. 218.
    A. Fröhlicher and A. Nijenhuis, “Theory of vector-valued differential forms. Part II. Almost-complex structures,” Proc. Koninkl. Ned. Akad. Wetenschap., A61(4): 414–429 (1958).Google Scholar
  219. 219.
    A. Fröhlicher and A. Nijenhuis, “Invariance of vector form operations under mappings,” Comment. Math. Helv., 34(3): 227–248 (1960).MathSciNetCrossRefGoogle Scholar
  220. 220.
    A. Fujimoto, “On the structure tensor of G-structure,” Mem. Coll. Sci. Univ. Kyoto, A33(l): 157–169 (1960).MathSciNetGoogle Scholar
  221. 221.
    A. Fujimoto, “On automorphisms of G-structures,” J. Math. Kyoto Univ. (formerly Mem. Coll. Sci. Univ. Kyoto, Ser. A, Math.), 1(1): 1–20 (1961).MathSciNetMATHGoogle Scholar
  222. 222.
    A. Fujimoto, “Conformai geometry of G-structures. I,” Tensor, 15(3): 181–190 (1964).Google Scholar
  223. 223.
    A. Fujimoto, “Conformai geometry of G-structures. II,” Tensor, 15(3): 191–199 (1964).MathSciNetGoogle Scholar
  224. 224.
    T. Fujitani, “Complex-valued differential forms on normal contact riemannian manifolds,” Tohoku Math. J., 18(4): 349–361 (1966).MathSciNetMATHCrossRefGoogle Scholar
  225. 225.
    T. Fukami, “Invariant tensors under the real representation of symplectic group and their applications,” Tohoku Math. J., 10(1): 81–90 (1958).MathSciNetMATHCrossRefGoogle Scholar
  226. 226.
    T. Fukami, “Affine connections in almost-product manifolds with some structures,” Tohoku Math. J., 11(3): 430–446 (1959).MathSciNetMATHCrossRefGoogle Scholar
  227. 227.
    S. Goldberg, “Rigidité de variétés de contact à courbure positive,” Compt. Rend. Acad. Sci., 261(9): 1936–1939 (1965).MATHGoogle Scholar
  228. 228.
    V. G. Gorciu, “Asupra unor algebre neasociative A3,” Studii Si Cercetǎri Mat. Acad. RPR, 16(6): 747–751 (1964).MathSciNetMATHGoogle Scholar
  229. 229.
    J. W. Gray, “A theory of pseudogroups with applications to contact structures,” Thesis, Stanford University (1957). Technical Report ONR.Google Scholar
  230. 230.
    J. W. Gray, “Contact structures,” Abstr. Short Communs. Internat. Congress Math, in Edinburgh, University of Edinburgh (1958), p. 113.Google Scholar
  231. 231.
    J. W. Gray, “Some global properties of contact structures,” Ann. Math., 69(2): 421–450(1959).MATHCrossRefGoogle Scholar
  232. 232.
    P. Griffiths, “Deformations of G-structures. Part A. General theory of deformations,” Math. Ann., 155(4): 292–315 (1964).MathSciNetMATHCrossRefGoogle Scholar
  233. 233.
    P. Griffiths, “Deformations of G-structures. Part B. Deformations of geometric G-structures,” Math. Ann., 158(5): 328–351 (1965).CrossRefGoogle Scholar
  234. 234.
    P. Griffiths, “On the existence of a locally complete germ of deformation of certain G-structures,” Math. Ann., 159(3): 151–171 (1965).MathSciNetMATHCrossRefGoogle Scholar
  235. 235.
    V. Guillemin, “The integrability problem for G-structures,” Trans. Am. Math. Soc., 116(4): 544–560 (1965).MathSciNetMATHGoogle Scholar
  236. 236.
    V. Guillemin and I. Singer, “Differential equations and G-structures,” in: Proc. US—Japan Seminar Different. Geometry, Kyoto, 1965, Nippon Hyoronsha Co., Ltd., Tokyo (1966), pp. 34–36.Google Scholar
  237. 237.
    V. Guillemin and S. Sternberg, “Sur les systèmes de formes différentielles,” Ann. Inst. Fourier, 13(2): 61–74 (1963).MathSciNetMATHCrossRefGoogle Scholar
  238. 238.
    T. Hangan, “Asupra diferentierilor formelor tensoriale asociate unui tensor mixt de ordinul al doilea,” An. Univ. Bucuresti. Ser. Stint. Natur., 10(29): 209–224 (1961).MathSciNetGoogle Scholar
  239. 239.
    T. Hangan, “Sur la forme canonique d’un tenseur mixte du second ordre,” Compt. Rend. Acad. Sci., 255(3):452–453 (1962).MathSciNetMATHGoogle Scholar
  240. 240.
    T. Hangan, “On the canonical form of a second-order mixed tensor,” Rev. Math. Pures. et Appl. (RPR), 7(4): 617–626 (1962).MathSciNetMATHGoogle Scholar
  241. 241.
    T. Hangan, “Géométrie différentielle grassmannienne,” Rev. Roumaine Math. Pures et Appl., 11(5): 519–531 (1966).MathSciNetMATHGoogle Scholar
  242. 242.
    T. Hangan, “On the Riemannian structure of the real and complex Grassmann manifolds,” Tensor, 18(1):26–31 (1967).MathSciNetMATHGoogle Scholar
  243. 243.
    S. Hashimoto, “Operators on the almost-complex manifolds which admit quaternion structure,” Sci. Rept. Fac. Literat. and Sci. Hirosaki Univ., 7(2): 37–41 (1960).Google Scholar
  244. 244.
    S. Hashimoto, “On differentiable manifolds which admit (Φ(1)(2)(3),...Φ(r),) structures,” Sci. Rept. Fac. Literat. and Sci. Hirosaki Univ., 8(2): 67–73 (1961).Google Scholar
  245. 245.
    S. Hashimoto, “On the differentiable manifolds with certain almost-contact structures which are similar to the quaternion structures,” Sci. Rept. Fac. Literat. and Sci. Hirosaki Univ., 8(2): 74–78 (1961).Google Scholar
  246. 246.
    S. Hashimoto, “On differentiable manifold with almost-quaternion contact structure. I,” Sci. Rept. Fac Literat. and Sci. Hirosaki Univ., 8(1): 1–7 (1961).Google Scholar
  247. 247.
    S. Hashimoto, “On differentiable manifold with almost-quaternion contact structure. II,” Sci. Rept. Fac. Literat. and Sci. Hirosaki Univ., 8(2): 79–87 (1961).Google Scholar
  248. 248.
    S. Hashimoto, “On differentiable manifold with almost-quaternion contact structure. III,” Sci. Rept. Fac. Literat, and Sci. Hirosaki Univ., 10(1): 5–9 (1961).Google Scholar
  249. 249.
    S. Hashimoto, “On differentiable manifold with almost-quaternion contact structure,” Tensor, 15(3): 258–268 (1964).MathSciNetMATHGoogle Scholar
  250. 250.
    S. Hashimoto, “On the differentiable manifold Mn admitting tensor fields (F, G) of type (1, 1) satisfying F3 + F = 0, G3 + G = 0, FG = ~GF, and F2 = G2,” Tensor, 15(3): 269–274 (1964).MathSciNetMATHGoogle Scholar
  251. 251.
    S. Hashimoto and T. Ichinohe, “On a manifold induced from the differentiable manifold with the almost-contact metric structure,” Sci. Rept. Fac. Literat. and Sci. Hirosaki Univ., 9(2): 62–71 (1962).MathSciNetGoogle Scholar
  252. 252.
    Y. Hatakeyama, “On the existence of Riemann metrics associated with a 2-form of rank 2r,” Tohoku Math. J., 14(2): 162–166 (1962).MathSciNetMATHCrossRefGoogle Scholar
  253. 253.
    Y. Hatakeyama, “Some notes on differentiable manifolds with almost-contact structures,” Tohoku Math. J., 15(2): 176–181 (1963).MathSciNetMATHCrossRefGoogle Scholar
  254. 254.
    Y. Hatakeyama, “On the integrability of a structure defined by two semisimple 0-deformable vector l-forms which commute with each other,” Tohoku Math. J., 17(2): 171–177 (1965).MathSciNetMATHCrossRefGoogle Scholar
  255. 255.
    Y. Hatakeyama, “Some notes on the group of automorphisms of contact and symplectic structures,” Tohoku Math. J., 18(3): 338–347 (1966).MathSciNetMATHCrossRefGoogle Scholar
  256. 256.
    Y. Hatakeyama, Y. Ogawa, and S. Tanno, “Some properties of manifolds with contact metric structure,” Tohoku Math. J., 15(1): 42–48 (1963).MathSciNetMATHCrossRefGoogle Scholar
  257. 257.
    K. Havlicek, “O diferenciálni geometrii jednoparametrické soustavy přimek v dvojosé geometrii,” Časop. Pěstov. Mat., 87(1): 103 (1962).Google Scholar
  258. 258.
    R. Hermann, “Sur les automorphismes infinitésimaux d’une G-structure,” Compt. Rend. Acad. Sci., 239(25): 1760–1761 (1954).MathSciNetMATHGoogle Scholar
  259. 259.
    F. Hirzebruch, “Über die quaternionalen projektiven Räume,” Sitzber. Math.-Nat. K1. Bayer. Akad. Wissenschap., pp. 301–312 [1953 (1954)].Google Scholar
  260. 260.
    Chorng-Shi Houh, “Affine connections in an almost-product manifold,” Tensor, 12(2): 167–184 (1962).MathSciNetMATHGoogle Scholar
  261. 261.
    Chorng-Shi. Houh, “The integrability of a structure on a differentiable manifold,” Tohoku Math. J., 17(1): 72–75 (1965).MathSciNetMATHCrossRefGoogle Scholar
  262. 262.
    Chen-Jung Hsu, “Note on the integrability of a certain structure on differentiable manifold,” Tohoku Math. J., 12(2): 349–360 (1960).MathSciNetMATHCrossRefGoogle Scholar
  263. 263.
    Chen-Jung Hsu, “On some structures which are similar to the quaternion structure,” Tohoku Math. J., 12(3): 403–428 (1960).MathSciNetMATHCrossRefGoogle Scholar
  264. 264.
    Chen-Jung Hsu, “On some properties of π -structures on differentiable manifold,” Tohoku Math. J., 12(3): 429–454 (1960).MathSciNetMATHCrossRefGoogle Scholar
  265. 265.
    Chen-Jung Hsu, “Note on (φ, ξ, η])-structure,” Tohoku Math. J., 13(3):434–442 (1961).MathSciNetMATHCrossRefGoogle Scholar
  266. 266.
    Chen-Jung Hsu, “On Walker differentiation in differentiable manifolds with r — π-structure,” Tohoku Math. J., 14(4): 332–343 (1962).MathSciNetMATHCrossRefGoogle Scholar
  267. 267.
    Chen-Jung Hsu, “Remarks on certain almost-product spaces,” Pacif.J. Math., 14(1): 163–176 (1964).MATHCrossRefGoogle Scholar
  268. 268.
    Chen-Jung Hsu and Chorng-Shi Houh, “Note on the integrability conditions of (φ, ψ)-structures,” Tohoku Math. J., 18(4): 368–377 (1966).MathSciNetMATHCrossRefGoogle Scholar
  269. 269.
    X. Hubaut, “Construction d’une droite projective sur une algèbre associative,” Bull. C1. Sci. Acad. Roy. Belg., 50(6): 618–623 (1964).MathSciNetMATHGoogle Scholar
  270. 270.
    Y. Ichijyo, “Differendable manifolds admitting complex distributions,” J.Math. Kyoto Univ., 5(1): 67–85 (1965).MathSciNetMATHGoogle Scholar
  271. 271.
    Y. Ichijyo, “On almost-contact metric manifolds admitting parallel fields of null planes,” Tohoku Math. J., 16(2): 123–129 (1964).MathSciNetMATHCrossRefGoogle Scholar
  272. 272.
    Y. Ichijyo, “Analytic manifolds admitting parallel fields of complex planes,” J. Math. Kyoto Univ., 4(2): 369–380 (1965).MathSciNetMATHGoogle Scholar
  273. 273.
    Y. Ichijyo, “Almost-complex structures of tangent bundles and Finsler metrics,” J. Math. Kyoto Univ., 6(3): 419–452 (1967).MathSciNetMATHGoogle Scholar
  274. 274.
    S. Ishihara, “Holomorphically projective changes and their groups in an almost-complex manifold,” Tohoku Math. J., 9(3): 273–297 (1957).MathSciNetMATHCrossRefGoogle Scholar
  275. 275.
    S. Ishihara, “On a tensor field φ h i satisfying φ P w ± 1,” Tohoku Math. J., 13(3): 443–454(1961).MathSciNetMATHCrossRefGoogle Scholar
  276. 276.
    S. Ishihara, “Normal structure j satisfying f 3+ f = 0,” Kodai Math. Semin. Kept., 18(1): 36–47 (1966).MathSciNetMATHCrossRefGoogle Scholar
  277. 277.
    Ju. B. Ivanov, “Flächen in der zweiachsigen Geometrie,” Compt. Rend. Bulgare Acad. Sci., 14(1): 11–13 (1961).MATHGoogle Scholar
  278. 278.
    Ju. B. Ivanov, “Die geodätischen Linien erster Art in der zweiachsigen Geometrie als Minimallinien,” Compt. Rend. Bulgare Acad. Sci., 15(7): 697–698 (1962).MATHGoogle Scholar
  279. 279.
    Ju. B. Ivanov, “Über die Kongruenz der Flächen in der hyperbolischen zweiachsigen Geometrie,” Compt. Rend. Bulgare Acad. Sci., 17(8): 685–688 (1964).MATHGoogle Scholar
  280. 280.
    A. Kandatu, “Integrability of a field of partially null planes in a Riemannian space,” Tensor, 14:68–70 (1963).MathSciNetMATHGoogle Scholar
  281. 281.
    A. Kandatu, “Tangent bundle of a manifold with a nonlinear connection,” Kodai Math. Semin. Rept., 18(4): 259–270 (1966).MathSciNetMATHCrossRefGoogle Scholar
  282. 282.
    S. Kashiwabara, “The structure of a Riemannian manifold admitting a parallel field of one-dimensional tangent vector subspaces,” Tohoku Math. J., 11(3): 327–350(1959).MathSciNetMATHCrossRefGoogle Scholar
  283. 283.
    S. Kashiwabara, “The structure of a Riemannian manifold admitting a parallel field of tangent vector subspaces,” Tohoku Math. J., 12(1): 102–119 (1960).MathSciNetMATHCrossRefGoogle Scholar
  284. 284.
    S. Kashiwabara, “On the parallelisability under Riemannian metrics of direction fields over 3-dimensional manifolds,” Tohoku Math. J., 14(1): 24–47 (1962).MathSciNetMATHCrossRefGoogle Scholar
  285. 285.
    S. Kashiwabara, “On the parallelisability under Riemannian metrics of direction fields over 3-dimensional manifolds. II,” Tohoku Math. J., 15(4): 332–334 (1963).MathSciNetMATHCrossRefGoogle Scholar
  286. 286.
    Y. Kerbrat, “Variétés à structure presque-produit tangente et connexions spéciales,” Compt. Rend. Acad. Sci., AB262(4): A237–A239 (1966).MathSciNetGoogle Scholar
  287. 287.
    J. Klein, “Opérateurs différentiels sur les variétés presque tangentes,” Compt. Rend. Acad. Sci., 257(17): 2392–2394 (1963).MATHGoogle Scholar
  288. 288.
    E. Kobayashi, “A remark on the Nijenhuis tensor,” Pacif. J. Math., 12(3): 963–977 (1962).MATHCrossRefGoogle Scholar
  289. 289.
    E. Kobayashi, “Errata to the paper ‘A remark on the Nijenhuis tensor’,” Pacif. J. Math., 12(4): 1466 (1962).CrossRefGoogle Scholar
  290. 290.
    E. Kobayashi, “A remark on the existence of a G-structure,” Proc. Am. Math. Soc., 16(6): 1329–1331 (1965).MATHGoogle Scholar
  291. 291.
    S. Kobayashi, “Remarks on complex contact manifolds,” Proc. Am. Math. Soc, 10(1): 164–167 (1959).MATHCrossRefGoogle Scholar
  292. 292.
    S. Kobayashi, “Canonical forms on frame bundles of higher-order contact,” in: Proc. Symposia in Pure Math., Vol. 3, Differential Geometry. A. M. S. (1961), pp. 186–193.Google Scholar
  293. 293.
    S. Kobayashi and T. Nagano, “On a fundamental theorem of Weyl-Cartan on G-structures,” J. Math. Soc. Japan, 17(1): 84–101 (1965).MathSciNetMATHCrossRefGoogle Scholar
  294. 294.
    K. Kodaira, “On deformations of some complex pseudo-group structures,” Ann. Math., 71(2): 224–302 (1960).MathSciNetMATHCrossRefGoogle Scholar
  295. 295.
    S. Koto, “Infinitesimal transformations of a manifold with f-structure,” Kodai Math. Semin. Kept., 16(2): 116–126 (1964).MathSciNetCrossRefGoogle Scholar
  296. 296.
    S. Koto and M. Nagao, “On an invariant tensor under a CL-transformation,” Kodai Math. Semin. Rept., 18(2): 87–95 (1966).MathSciNetMATHCrossRefGoogle Scholar
  297. 297.
    M. Kurita, “Tensor fields and their parallelism,” Nagoya Math. J., 18:133–151 (1961).MathSciNetMATHGoogle Scholar
  298. 298.
    M. Kurita, “On normal contact metric manifolds,” J. Math. Soc. Japan, 15(3): 304–318 (1963).MathSciNetMATHCrossRefGoogle Scholar
  299. 299.
    A.J. Ledger and K. Yano, “The tangent bundle of a locally symmetric space,” J. London Math. Soc, 40(3): 487–492 (1965).MathSciNetMATHCrossRefGoogle Scholar
  300. 300.
    J. Lefebvre, “Transformations conformes et automorphismes de certaines structures presque symplectique,” Compt. Rend. Acad. Sci., AB262(13): A752–A754 (1966).MathSciNetGoogle Scholar
  301. 301.
    G. Legrand, “Sur les variétés à structure de presque-produit complexe,” Compt. Rend. Acad. Sci., 242(3): 335–337 (1956).MathSciNetMATHGoogle Scholar
  302. 302.
    G. Legrand, “Structures presque hermitiennes au sens large,” Compt. Rend. Acad. Sci., 243(19): 1392–1395 (1956).MathSciNetMATHGoogle Scholar
  303. 303.
    G. Legrand, “Etude d’une généralisation des structures presque complexes sur les variétés différentiables,” Rend. Circolo Mat. Palermo, 7(3): 323–354 (1958).CrossRefGoogle Scholar
  304. 303a.
    G. Legrand, “Etude d’une généralisation des structures presque complexes sur les variétés différentiables,” Rend. Circolo Mat. Palermo, 8(1): 5–48 (1959).MathSciNetCrossRefGoogle Scholar
  305. 304.
    G. Legrand, “T-structures sur les variétés différentiables,” Compt. Rend. Acad. Sci., 250(20): 3266–3268 (1960).MathSciNetMATHGoogle Scholar
  306. 305.
    G. Legrand, “Une interprétation de la forme de courbure d’une connexion infinitésimale,” Compt. Rend. Acad. Sci., 250(21): 3441–3442 (1960).MathSciNetMATHGoogle Scholar
  307. 306.
    G. Legrand, “Notions diverses de formes de torsion,” Compt. Rend. Acad. Sci., 256(10): 2087–2088 (1963).MathSciNetMATHGoogle Scholar
  308. 307.
    G. Legrand, “T-structures homogènes,” Compt. Rend. Acad. Sci., 258(19): 4648–4650 (1964).MathSciNetMATHGoogle Scholar
  309. 308.
    D. Lehmann, “Remarques sur la connexion canonique d’une variété de Stiefel,” Compt. Rend. Acad. Sci., 259(17): 2754–2757 (1964).MATHGoogle Scholar
  310. 309.
    J. Lehmann-Lejeune, “Sur l’intégrabilite de certaines G-structures,” Compt. Rend. Acad. Sci., 258(22): 5326–5329 (1964).MathSciNetMATHGoogle Scholar
  311. 310.
    J. Lehmann-Lejeune, “Intégrabilité des G-structures défines; par une 1-forme à valeurs dans le module des champs de vecteurs, O-déformable,” Compt. Rend. Acad. Sci., 259(23): 4216–4219 (1964).MathSciNetMATHGoogle Scholar
  312. 311.
    J. Lehmann-Lejeune, “Intégrabilité des G-structures définites par une 1-forme a valeurs dans le module des champs de vecteurs, O-déformable et nilpotente,” Compt. Rend. Acad. Sci., 260(3): 772–775 (1965).MathSciNetMATHGoogle Scholar
  313. 312.
    J. Lehmann-Lejeune, “Etude des formes différentialles liée à certaines G-structures,” Compt. Rend. Acad. Sci., 260(7): 1838–1841 (1965).MathSciNetMATHGoogle Scholar
  314. 313.
    J. Lehmann-Lejeune, “Intégrabilité des G-structures défines par une 1-forme 0-deformable à valéurs dans le fibre tangent,” Ann. Inst. Fourier, 16(2):329–387 [1966 (1967)].MathSciNetCrossRefGoogle Scholar
  315. 314.
    J. Lewis, “Invariants of higher-order G-structures,” Doctoral Dissertation, Northwestern University, 1964, 42 pp.Google Scholar
  316. 314a.
    J. Lewis, “Invariants of higher-order G-structures,” Dissertation Abstr., 25(11): 6658 (1965).Google Scholar
  317. 315.
    P. Libermann, “Sur le problème d’équivalence de certaines structures infinitésimales,” Ann. Mat. Pura ed Appl., 36: 27–120 (1954).MathSciNetMATHCrossRefGoogle Scholar
  318. 316.
    P. Libermann, “Sur les structures presque complexes et autres structures infinitésimales réguliéres,” Bull. Soc. Math. France, 83(3): 195–224 (1955).MathSciNetMATHGoogle Scholar
  319. 317.
    P. Libermann, “Automorphismes infinitésimaux d’une structure symplectique,” Compt. Rend. Acad. Sci., 242:1114–1117 (1956).MathSciNetMATHGoogle Scholar
  320. 318.
    P. Libermann, “Pseudogroupes infinitésimaux. Applications aux G-structures,” Compt. Rend. Acad. Sci., 246(9): 1365–1368 (1958).MathSciNetMATHGoogle Scholar
  321. 319.
    P. Libermann, “Sur les automorphismes infinitésimaux des structures symplec-tiques et des structures de contact,” in: Colloq. Géometrie Différent. Globale, Brussels, 1958, Paris (1959), pp. 37–59.Google Scholar
  322. 320.
    P. Libermann, “Pseudogroupes infinitésimaux attachés aux pseudogroupes de Lie,” Bull. Soc. Math. France, 87(4):409–425 (1959).MathSciNetGoogle Scholar
  323. 321.
    P. Libermarrn, “Sur certaines résolutions de faisceaux,” Compt. Rend. Acad. Sci., 254(10): 1735–1737 (1962).Google Scholar
  324. 322.
    P. Libermann, “Sur quelques exemples de structures pfaffiennes et presque co-symplectiques,” Ann. Mat. Pura ed Appl., 60:153–172 (1962).MathSciNetMATHCrossRefGoogle Scholar
  325. 323.
    P. Libermann, “On sprays and higher-order connections,” Proc. Nat. Acad. Sci. USA, 49(4): 459–462 (1963).MathSciNetMATHCrossRefGoogle Scholar
  326. 324.
    P. Libermann, “Sur la géometrie des prolongements des espaces fibrés vectoriels,” Ann. Inst. Fourier, 14(1): 145–172 (1964).MathSciNetMATHCrossRefGoogle Scholar
  327. 325.
    A. Lichnerowicz, “Sur la réductivité de certaines algébres d’automorphismes,” Compt. Rend. Acad. Sci., 253(13): 1302–1304 (1961).MathSciNetMATHGoogle Scholar
  328. 326.
    A. Lichnerowicz, “Théorémes de réductivité sur des algébres d’automorphismes,” Rend. Mat. e Applic, 22(1–2): 197–244 (1963).MathSciNetMATHGoogle Scholar
  329. 327.
    T. Lin, “On complex manifolds with certain structures which are related to complex contact structures,” Tohoku Math. J., 15(3): 187–202 (1963).MATHCrossRefGoogle Scholar
  330. 328.
    E. Martinelli, “Varietà a struttura quaternionale generalizzata,” Atti Accad. Naz. Lincei. Rend. C1. Sci. Fis., Mat. Natur., 26(3): 353–362 (1959).MathSciNetMATHGoogle Scholar
  331. 329.
    E. Martinelli, “Modello metrico reale dello spazio projettivo quaternionale,” Ann. Mat. Pura ed Appl., 49: 73–89 (1960).MathSciNetMATHCrossRefGoogle Scholar
  332. 330.
    E. Martinelli, “Metriche hermitiane sulle varietà a struttura quasi quaternionale generalizzata,” Atti Accad. Naz. Lincei. Rend. C1. Sci. Fis., Mat. Natur, 39(6): 400–407 (1965).MathSciNetMATHGoogle Scholar
  333. 331.
    E. Martinelli, “Variétés à structure quaternionienne généralisée,” Rev. Roumaine Math. Pures et Appl., 10(7): 915–922 (1965).MathSciNetMATHGoogle Scholar
  334. 332.
    M. Matsumoto, “Connections, metrics, and almost-complex structures of tangent bundles,” J. Math. Kyoto Univ., 5(3): 251–278 (1966).MathSciNetMATHGoogle Scholar
  335. 333.
    O. Mayer, “Geometrie biaxiale différentielle des courbes,” Bull. Math. Soc. Roum. des Sci. (1938), p. 40.Google Scholar
  336. 334.
    R. Miron, “Connexions compatibles aux structures conformes-presque symple-ctiques,” Compt. Rend. Acad. Sci., 265(21): A685–A687 (1967).MathSciNetGoogle Scholar
  337. 335.
    H. Mizusawa, “On infinitesimal transformations of K-contact and normal contact metric spaces,” Sci. Rept. Niigata Univ., A(1): 5–18 (1964).Google Scholar
  338. 336.
    A. Morimoto, “On normal almost-contact structures,” J. Math. Soc. Japan, 15(4): 420–436 (1963).MathSciNetMATHCrossRefGoogle Scholar
  339. 337.
    A. Morimoto, “On normal almost-contact structures with a regularity,” Tohoku Math. J., 16(1): 90–104 (1964).MathSciNetMATHCrossRefGoogle Scholar
  340. 338.
    Y. Muto, “On some (1, 1) tensor field and connections,” Sci. Rept. Yokohama Nat. Univ., Sec. 1, No. 10, pp. 1–11 (1963).MathSciNetGoogle Scholar
  341. 339.
    Y. Muto, “On integrability conditions of equations of contravariant almost-analytic vectors and some related ones,” Sci. Rept. Yokohama Nat. Univ., Sec. 1, No. 11, pp. 1–9 (1964).MathSciNetGoogle Scholar
  342. 340.
    T. Nagai and H. Kôjyô, “On some considerations of hypersurfaces in certain almost-complex spaces,” J. Fac. Sci. Hokkaido Univ., Ser. 1, 18(3–4): 114–123 (1965).Google Scholar
  343. 341.
    T. Nagano, “Isometries on complex-product spaces,” Tensor, 9(1): 47–61 (1959).MathSciNetMATHGoogle Scholar
  344. 342.
    H. Nakagawa, “f- Structures induced on submanifolds in spaces almost hermiti-an or kaehlerian,” Kodai Math. Semin. Rept., 18(2): 161–183 (1966).MathSciNetMATHCrossRefGoogle Scholar
  345. 343.
    H. Nakagawa, “On the automorphism groups of f-manifolds,” Kodai Math. Sem. Rept., 18(3): 251–257 (1966).MathSciNetMATHCrossRefGoogle Scholar
  346. 344.
    H. Nakagawa, “On framed f-manifolds,” Kodai Math. Sem. Rept., 18(4): 293–306 (1966).MathSciNetMATHCrossRefGoogle Scholar
  347. 345.
    H. Nakagawa, “On differentiable manifolds with certain almost-contact structures,” Sci. Rept. Tokyo Kyoiku Daigaku, A8:144–163 (1964).MathSciNetGoogle Scholar
  348. 346.
    H. Nakagawa, “On the set of (φ, ξ, η)-structures over a differentiable manifold,” Sci. Rept. Tokyo Kyoiku Daigaku, A7(26): 146–153 (1962).MathSciNetGoogle Scholar
  349. 347.
    T. Nasu, “A remark on a certain G-structure,” J. Sci. Hiroshima Univ., Ser. A, Div. 1, 29(2): 253–270 (1965).MathSciNetMATHGoogle Scholar
  350. 348.
    Ngo van-Que, “G-structure unvariante,” Compt. Rend. Acad. Sci., 253(22): 2454–2456 (1951).Google Scholar
  351. 349.
    H. Nickerson, “On differential operators and connections,” Trans. Am. Math. Soc, 99(3): 509–539 (1961).MathSciNetMATHCrossRefGoogle Scholar
  352. 350.
    A. Nijenhuis, “Xn-1 forming sets of eigenvectors,” Proc. Koninkl. Ned. Akad. Wetenschap., A54(2): 200–212 (1951)MathSciNetGoogle Scholar
  353. 350a.
    A. Nijenhuis, “Xn-1 forming sets of eigenvectors,” Indagationes Math., 13(2): 200–212(1951).MathSciNetGoogle Scholar
  354. 351.
    A. Nijenhuis, “Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I,” Proc. Koninkl. Ned. Akad. Wetenschap., A58(3):390–397 (1955)Google Scholar
  355. 351a.
    A. Nijenhuis, “Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I,” Indagationes Math., 17(3):390–397 (1955).MathSciNetGoogle Scholar
  356. 352.
    A. Nijenhuis, “Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II,” Proc. Koninkl. Ned. Akad. Wetenschap., A58(3):398–403 (1955)Google Scholar
  357. 352a.
    A. Nijenhuis, “Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II,” Indagationes Math., 17(3): 398–403 (1955).MathSciNetGoogle Scholar
  358. 353.
    M. Obata, “Affine transformations in an almost-complex manifold with a natural affine connection,” J. Math. Soc. Japan, 8(4): 345–362 (1956).MathSciNetMATHCrossRefGoogle Scholar
  359. 354.
    M. Obata, “Affine connexions in a quaternion manifold and transformations preserving the structure,” J. Math. Soc. Japan, 9(4): 406–416 (1957).MathSciNetMATHCrossRefGoogle Scholar
  360. 355.
    M. Obata, “Hermitian manifolds with quaternion structure,” Tohoku Math. J., 10(1): 11–18 (1958).MathSciNetMATHCrossRefGoogle Scholar
  361. 356.
    T. Ochiai, “On the automorphism group of a G-structure,” J. Math. Soc. Japan, 18(2): 189–193 (1966).MathSciNetMATHCrossRefGoogle Scholar
  362. 357.
    Y. Ogawa, “Some properties on manifolds with almost-contact structures,” Tohoku Math. J., 15(2): 148–161 (1963).MathSciNetMATHCrossRefGoogle Scholar
  363. 358.
    Y. Ogawa, “On principal torus bundles over a homogeneous contact manifold,” Tohoku Math. J., 16(3): 297–308 (1964).MathSciNetMATHCrossRefGoogle Scholar
  364. 359.
    Y. Ogawa, “On 5-dimensional Sasaki-Einstein space with sectional curvature ≥1/3” Tohoku Math. J., 19(2): 103–109 (1967).MathSciNetMATHCrossRefGoogle Scholar
  365. 360.
    Y. Ogawa, “On a (2m + l)-dimensional sasakian space with sectional curvature > (4m - 3)/4m(2m - 1),” Natur. Sci. Rept. Ochanomizu Univ., 18(1): 7–13 (1967).MATHGoogle Scholar
  366. 361.
    K. Ogiue, “On almost-contact manifolds admitting axiom of planes of axiom of free mobility,” Kodai Math. Semin. Rept., 16(4): 223–232 (1964).MathSciNetMATHCrossRefGoogle Scholar
  367. 362.
    K. Ogiue, “On fiberings of almost-contact manifolds,” Kodai Math. Semin. Rept., 17(1): 53–62 (1965).MathSciNetMATHCrossRefGoogle Scholar
  368. 363.
    K. Ogiue, “Theory of conformai connections,” Kodai Math. Semin. Rept., 19(2): 193–224 (1967).MathSciNetMATHCrossRefGoogle Scholar
  369. 364.
    K. Ogiue, “On the geometry of G-structures of higher order,” Proc. Japan Acad., 43(4): 255–257 (1967).MathSciNetMATHCrossRefGoogle Scholar
  370. 365.
    T. Okubo, “On the differential geometry of frame bundles,” Ann. Math. Pure ed Appl., 72:29–44 (1966).MathSciNetMATHCrossRefGoogle Scholar
  371. 366.
    M. Okumura, “Some remarks on space with a certain contact structure,” Tohoku Math. J., 14(2): 135–145 (1962).MathSciNetMATHCrossRefGoogle Scholar
  372. 367.
    M. Okumura, “On infinitesimal conformai and projective transformations of normal contact spaces,” Tohoku Math. J., 14(4): 398–412 (1962).MathSciNetMATHCrossRefGoogle Scholar
  373. 368.
    M. Okumura, “Certain almost-contact hypersurfaces in Euclidean spaces,” Kodai Math. Semin. Rept., 16(1): 44–54 (1964).MathSciNetMATHCrossRefGoogle Scholar
  374. 369.
    M. Okumura, “Certain almost-contact hypersurfaces in kaehlerian manifolds of constant holomorphic sectional curvatures,” Tohoku Math. J., 16(3): 270–284 (1964).MathSciNetMATHCrossRefGoogle Scholar
  375. 370.
    M. Okumura, “Cosymplectic hypersurfaces in kaehlerian manifolds of constant holomorphic sectional curvature,” Kodai Math. Semin. Rept., 17(2): 63–73 (1965).MathSciNetMATHCrossRefGoogle Scholar
  376. 371.
    M. Okumura, “Contact hypersurfaces in certain Kaehlerian manifolds,” Tohoku Math. J., 18(1): 74–102 (1966).MathSciNetMATHCrossRefGoogle Scholar
  377. 372.
    M. Okumura, “Certain infinitesimal transformation of normalcontact metric manifold,” Kodai Math. Semin. Rept., 18(2): 116–119 (1966).MathSciNetMATHCrossRefGoogle Scholar
  378. 373.
    M. Okumura, “Totally umbilical hypersurfaces of a locally product Riemannian manifold,” Kodai Math. Semin. Rept., 19(1):35–42 (1967).MathSciNetMATHCrossRefGoogle Scholar
  379. 374.
    D. I. Papuc, “Sur la théorie des surfaces d’un espace axial à 3 dimensions,” An. Stint. Univ. Iasi, Sec. 1, 4(2): 49–80 (1958).MATHGoogle Scholar
  380. 375.
    D. I. Papuc, “Classes de surfaces spéciales de l’espace axial à 3 dimensions,” Ann. Stint. Univ. Iasi, Sec. 1, 7(2):307–320 (1961).MathSciNetMATHGoogle Scholar
  381. 376.
    D. I. Papuc, “Sur les variétés des espaces kelinéens à groupe linéaire complétement reductible,” Compt. Rend. Acad. Sci., 256(1): 62–64 (1963).MathSciNetMATHGoogle Scholar
  382. 377.
    D. I. Papuc, “Sur la théorie des variétés des espaces kelinéens à groupe linéaire complètement réductible,” Compt. Rend. Acad. Sci., 257(3): 589–591 (1963).MathSciNetMATHGoogle Scholar
  383. 378.
    R. Pernet, “Une géométrie conforme quaternionienne et son extension,” Bull. Cl. Sci. Acad. Roy. Belg., 49(10): 1116–1129 (1963).MathSciNetMATHGoogle Scholar
  384. 379.
    R. Pernet, “Une géométrie conforme quaternionienne et son extension,” Bull. C1. Sci. Acad. Roy. Belg., 49(11): 1214–1224 (1963).MathSciNetMATHGoogle Scholar
  385. 380.
    R. Pernet, “Une géométrie conforme quaternionienne et son extension,” Bull. CI. Sci. Acad. Roy. Belg., 49(11): 1271–1280 (1963).MathSciNetGoogle Scholar
  386. 381.
    M. Pinl, “Zur Differentialgeometrie im totalisotropen R2 und R3 eines komplexen euklidischen R4 und R6,” Monatsh. Math., 63(3): 256–264 (1959).MathSciNetMATHCrossRefGoogle Scholar
  387. 382.
    M. Pinl, “Über eine konstante lineare Übertragung, welche dem Schief körper der Hamiltonschen Quaternionen entspricht,” Ann. Mat. Pura ed Appl., 55:13–21 (1961).MathSciNetMATHCrossRefGoogle Scholar
  388. 383.
    H. Reichardt, “Eine Aufspaltung von Windung und Krümmung in affin zusammenhängenden Räumen,” Acta Sci. Math., 21(3–4): 300–308 (1960).MathSciNetMATHGoogle Scholar
  389. 384.
    H. Reichardt, “Über die Teilräume affin zusammengängender Räume,” Abhandl. Math. Seminar Univ. Hamburg, 25(3–4): 146–154 (1962).MathSciNetMATHCrossRefGoogle Scholar
  390. 385.
    B. L. Reinhart, “Harmonic integrals on almost-product manifolds,” Trans. Am. Math. Soc, 88(1): 243–276 (1958).MathSciNetMATHCrossRefGoogle Scholar
  391. 386.
    B. L. Reinhart, “Foliated manifold with bundle-like metrics,” Ann. Math., 69(1): 119–132 (1959).MathSciNetMATHCrossRefGoogle Scholar
  392. 387.
    B. L. Reinhart, “Closed metric foliations,” Michigan Math. J., 8(1): 7–9 (1961).MathSciNetMATHCrossRefGoogle Scholar
  393. 388.
    E. Ruh, “On the automorphism group of a G-structure,” Comment. Math. Helv., 39(3): 189–204 (1964).MathSciNetMATHCrossRefGoogle Scholar
  394. 389.
    H. S. Ruse, “On parallel fields of planes in a Riemannian space,” Quart. J. Math., 20(80): 218–234 (1949).MathSciNetMATHCrossRefGoogle Scholar
  395. 390.
    H. S. Ruse, “Parallel planes in a Riemannian Vn,” Proc. Roy. Soc. Edinburgh, Sec. A, 62(1): 78–92 (1949/50).Google Scholar
  396. 391.
    T. Saeki, “Affine transformations in a differentiate manifold with π-structure,” J. Math. Soc. Japan, 14(3): 341–349 (1962).MathSciNetMATHCrossRefGoogle Scholar
  397. 392.
    T. Sakai, “Some transformation on K-contact and normal contact Riemannian manifolds,” Tohoku Math. J., 18(2): 216–224 (1966).MathSciNetMATHCrossRefGoogle Scholar
  398. 393.
    M. Salzert, “Die Eigenschaften derjenigen Kollineationen, die zwei konjugiert imaginären windschiefen Geraden im Raume festlassen,” Schr. der Math. Inst. und des Inst. für Angew. Math. der Univ. Berlin, 5(2): 133–177 (1940).MathSciNetGoogle Scholar
  399. 394.
    H. Sasagawa, “Certain almost-contact hypersurfaces in the almost-tachibanan space,” Res. Rept. Nagaoka Techn. Coll., 2(2): 101–113 (1966).MathSciNetGoogle Scholar
  400. 395.
    H. Sasagawa, “The f-structure induced on the submanifold of an *O-space,” Res. Rept. Nagaoka Techn. Coll., 2(3): 183–201 (1966).MathSciNetGoogle Scholar
  401. 396.
    S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds,” Tohoku Math. J., 10(3): 338–354 (1958).MathSciNetMATHCrossRefGoogle Scholar
  402. 397.
    S. Sasaki, “On differentiable manifolds with certain structures which are closely related to almost-contact structure. I,” Tohoku Math. J., 12(3): 459–476 (1960).MathSciNetMATHCrossRefGoogle Scholar
  403. 398.
    S. Sasaki, “On differentiable manifolds with (φ, ψ)-structures,” Tohoku Math. J., 13(1): 132–153 (1961).MathSciNetMATHCrossRefGoogle Scholar
  404. 399.
    S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds. H,” Tohoku Math. J., 14(2): 146–155 (1962).MathSciNetMATHCrossRefGoogle Scholar
  405. 400.
    S. Sasaki, “Homogeneous contact transformations,” Tohoku Math. J., 14(4): 369–397 (1962).MathSciNetMATHCrossRefGoogle Scholar
  406. 401.
    S. Sasaki, “A characterization of contact transformations,” Tohoku Math. J., 16(3): 285–290 (1964).MathSciNetMATHCrossRefGoogle Scholar
  407. 402.
    S. Sasaki, “On almost-contact manifolds,” in: Proc. US-Japan Seminar Different. Geometry, Kyoto, 1965, Nippon Hyoronsha Co., Ltd., Tokyo (1966), pp. 128–136.Google Scholar
  408. 403.
    S. Sasaki and Y. Hatakeyama, “On differentiable manifolds with certain structures which are closely related to almost-contact structure. H,” Tohoku Math. J., 13(2): 281–294 (1961).MathSciNetMATHCrossRefGoogle Scholar
  409. 404.
    S. Sasaki and Y. Hatakeyama, “On differentiable manifolds with contact metric structures,” J. Math. Soc. Japan, 14(3): 249–271 (1962).MathSciNetMATHCrossRefGoogle Scholar
  410. 405.
    S. Sasaki and Chen-Jung Hsu, “On the integrability of almost- contact structure,” Tohoku Math. J., 14(2): 167–176 (1962).MathSciNetMATHCrossRefGoogle Scholar
  411. 406.
    I. M. Singer and S. Sternberg, “The infinite groups of Lie and Cartan. Part I. The transitive groups,” J. Analyse Math., 15:1–114 (1965).MathSciNetMATHCrossRefGoogle Scholar
  412. 407.
    W. Slebodzinski, “Contribution à la géométrie différentielle d’un tenseur mixte de valence deux,” Colloq. Math., 13(1): 49–54 (1964).MathSciNetMATHGoogle Scholar
  413. 408.
    D. C. Spencer, “Deformation of structures on manifolds defined by transitive, continuous pseudogroups. Part 1. Infinitesimal deformations of structure,” Ann. Math., 76(2): 306–398 (1962).MATHCrossRefGoogle Scholar
  414. 409.
    D. C. Spencer, “Deformation of structures on manifolds defined by transitive, continuous pseudogroups. Part II. Deformations of structure,” Ann. Math., 76(3): 399–445(1962).CrossRefGoogle Scholar
  415. 410.
    D. C. Spencer, “Deformation of structures on manifolds defined by transitive, continuous pseudogroups. Part III. Structures defined by elliptic pseudogroups,” Ann. Math., 81(3): 389–450 (1965).MATHCrossRefGoogle Scholar
  416. 411.
    K. Srinivasacharyulu, “Sur certaines familles Différentiables de G-structures,” Compt. Rend. Acad. Sci., 250(7): 1171–1173 (1960).MathSciNetMATHGoogle Scholar
  417. 412.
    S. Tachibana, “Some theorems on locally product Riemannian spaces,” Tohoku Math. J., 12(2): 281–292 (1960).MathSciNetMATHCrossRefGoogle Scholar
  418. 413.
    S. Tachibana, “Analytic tensor and its generalization,” Tohoku Math. J., 12(2): 208–221 (1960).MathSciNetMATHCrossRefGoogle Scholar
  419. 414.
    S. Tachibana, “On harmonic tensors in compact Sasakian spaces,” Tohoku Math. J., 17(3): 271–284 (1965).MathSciNetMATHCrossRefGoogle Scholar
  420. 415.
    S. Tachibana, “On a decomposition of C-harmonic forms in a compact Sasakian space,” Tohoku Math. J., 19(2): 198–212 (1967).MathSciNetMATHCrossRefGoogle Scholar
  421. 416.
    S. Tachibana and S. Koto, “On almost-analytic functions, tensors, and invariant subspaces,” Tohoku Math. J., 14(2): 177–186 (1962).MathSciNetMATHCrossRefGoogle Scholar
  422. 417.
    S. Tachibana and M. Okumura, “On the almost-complex structure of tangent bundles of Riemannian spaces,” Tohoku Math. J., 14(2): 156–161 (1962).MathSciNetMATHCrossRefGoogle Scholar
  423. 418.
    S. Takizawa, “On contact structures of real and complex manifolds,” Tohoku Math. J., 15(3): 227–252 (1963).MathSciNetMATHCrossRefGoogle Scholar
  424. 419.
    S. M. Tallini, “Metrica hermitiana ellittica in uno spazio proiettivo quater-nionale,” Ann. Mat. Pura ed Appl., 60: 203–233 (1962).MATHCrossRefGoogle Scholar
  425. 420.
    S. M. Tallini, “Métrequehermitienne elliptique dans un espace projectif quater-nionien,” Ann. Univ. Sci. Budapest. Sec. Math., 7:109–112 (1964).MATHGoogle Scholar
  426. 421.
    N. Tanaka, “On the pseudo-conformal geometry of hypersurfaces of the space of n-complex variables,” J. Math. Soc. Japan, 14(4): 397–429 (1962).MathSciNetMATHCrossRefGoogle Scholar
  427. 422.
    N. Tanaka, “On the equivalence problems associated with a certain class of homogeneous spaces,” J. Math. Soc. Japan, 17(2): 103–139 (1965).MathSciNetMATHCrossRefGoogle Scholar
  428. 423.
    S. Tanno, “Note on infinitesimal transformations over contact manifolds,” Tohoku Math. J., 14(4): 416–430 (1962).MathSciNetMATHCrossRefGoogle Scholar
  429. 424.
    S. Tanno, “Some transformations on manifolds with almost-contact and contact metric structures,” Tohoku Math. J., 15(2): 140–147 (1963).MathSciNetMATHCrossRefGoogle Scholar
  430. 425.
    S. Tanno, “On fiberings of some noncompact contact manifolds,” Tohoku Math. J., 15(3): 289–297 (1963).MathSciNetMATHCrossRefGoogle Scholar
  431. 426.
    S. Tanno, “Some transformations on manifolds with almost-contact and contact metric structures. II,” Tohoku Math. J., 15(4): 322–331 (1963).MathSciNetMATHCrossRefGoogle Scholar
  432. 427.
    S. Tanno, “A remark on transformations of a K-contact manifold,” Tohoku Math. J., 16(2): 173–175 (1964).MathSciNetMATHCrossRefGoogle Scholar
  433. 428.
    S. Tanno, “An almost-complex structure of the tangent bundle of an almost-contact manifold,” Tohoku Math. J., 17(1): 7–15 (1965).MathSciNetMATHCrossRefGoogle Scholar
  434. 429.
    S. Tanno, “Almost-complex structures in bundle spaces over almost-contact manifolds,” J. Math. Soc. Japan, 17(2): 167–186 (1965).MathSciNetMATHCrossRefGoogle Scholar
  435. 430.
    S. Tanno, “A theorem on regular vector fields and its application to almost-contact structures,” Tohoku Math. J., 17(3): 235–238 (1965).MathSciNetMATHCrossRefGoogle Scholar
  436. 431.
    S. Tanno, “Sur une variété munie d’une structure de contact admettant certains transformations,” Tohoku Math. J., 17(3): 239–243 (1965).MathSciNetMATHCrossRefGoogle Scholar
  437. 432.
    S. Tanno, “Partially conformai transformations with respect to (m - l)-dimen-sional distributions of m-dimensional Riemannian manifolds,” Tohoku Math. J., 17(4): 358–409 (1965).MathSciNetMATHCrossRefGoogle Scholar
  438. 433.
    S. Tanno, “Partially conformai transformations with respect to (m - l)-dimen-sional distributions of m-dimensional Riemannian manifolds. II,” Tohoku Math. J., 18(4): 378–392 (1966).MathSciNetMATHCrossRefGoogle Scholar
  439. 434.
    S. Tanno, “A conformai transformation of certain contact Riemannian manifolds,” Tohoku Math. J., 18(3): 270–273 (1966).MathSciNetMATHCrossRefGoogle Scholar
  440. 435.
    S. Tanno, “Sur une variété de K-contact métrique de dimension 3,” Compt. Rend. Acad. Sci., 263(9): A317–A319 (1966).MathSciNetGoogle Scholar
  441. 436.
    S. Tanno, “Harmonic forms and Betti numbers of certain contact Riemannian manifolds,” J. Math. Soc. Japan, 19(3):308–316 (1967).MathSciNetMATHCrossRefGoogle Scholar
  442. 437.
    S. Tanno, “Topology of compact Sasakian manifolds,” Proc. Japan. Acad. 43(6): 423–425 (1967).MathSciNetMATHCrossRefGoogle Scholar
  443. 438.
    S. Tanno, “Curvature preserving transformations of K-contact Riemannian manifolds,” Kodai Math. Sem. Rept., 19(2): 156–158 (1967).MathSciNetMATHCrossRefGoogle Scholar
  444. 439.
    Y. Tashiro, “On contact structure of hypersurfaces in complex manifolds. I,” Tohoku Math. J., 15(1): 62–78 (1963).MathSciNetMATHCrossRefGoogle Scholar
  445. 440.
    Y. Tashiro, “On contact structure of hypersurfaces in complex manifolds. II,” Tohoku Math. J., 15(2): 167–175 (1963).MathSciNetMATHCrossRefGoogle Scholar
  446. 441.
    Y. Tashiro and S. Tachibana, “On Fubinian and C-Fubinian manifolds,” Kodai Math. Semin. Rept., 15:176–183 (1963).MathSciNetMATHCrossRefGoogle Scholar
  447. 442.
    C. Teleman, “Asupra spatiilor projective cuaternionice,” in: Lucrarile Const. Geom. Different., 1955, Timisoara Acad. RPR (1956), pp. 249–252.Google Scholar
  448. 443.
    C. Teleman, “Sur les variétés de Grassmann,” Bull. Math. Soc. Sci. et Phys. RPR, 2(2): 203–224 (1958).MathSciNetGoogle Scholar
  449. 444.
    J. Tits, “Isotropie des espaces de Klein,” in: Colloq. Géométrie Différent. Globale, Brussels, 1958, Paris-Louvain (1959), pp. 153–161.Google Scholar
  450. 445.
    P. Tondeur, “Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Structur,” Comment. Math. Helv., 36(3): 234–244 (1961).MathSciNetMATHGoogle Scholar
  451. 446.
    P. Tondeur, “Structure presque kählérienne naturelle sur la fibré des vecteurs covariants d’une variété riemannienne,” Compt. Rend. Acad. Sci., 254(3): 407–408 (1962).MathSciNetMATHGoogle Scholar
  452. 447.
    P. Tondeur, “Champs invariants de p-plans sur un espace homogéne,” Compt. Rend. Acad. Sci., 259(25): 4473–4475 (1964).MathSciNetMATHGoogle Scholar
  453. 448.
    I. Vàduva, “Asupra spatiilor cu conexiune afinâ constantâ atasate unor algebre reale,” Studii Si Cercetari Mat. Acad. RPR, 12(2): 535–541 (1961).MATHGoogle Scholar
  454. 449.
    G. Vränceanu, Lecons de Géométrie Différentielle, Vol. I, Vol. II, Bucharest, Acad. RPR (1957).Google Scholar
  455. 450.
    G. Vränceanu, “Spazi a connessione affine e le algebre di numeri ipercomplessi,” Ann. Scuola Normale Super. Pisa, 12(1–2): 5–20 (1958).Google Scholar
  456. 451.
    H. Wakakuwa, “On Riemannian manifolds with homogeneous holonomy group Sp (n),” Tohoku Math. J., 10(3): 274–303 (1958).MathSciNetMATHCrossRefGoogle Scholar
  457. 452.
    H. Wakakuwa, “On affinely connected manifolds with homogeneous holonomy group CL (n, Q) ⊗ T1,” Tohoku Math. J., 11(3): 364–375 (1959).MathSciNetMATHCrossRefGoogle Scholar
  458. 453.
    H. Wakakuwa, “On almost complex symplectic manifolds and affine connections with restricted homogeneous holonomy group Sp (n, C),” Tohoku Math. J., 12(2): 175–202 (1960).MathSciNetMATHCrossRefGoogle Scholar
  459. 454.
    H. Wakakuwa, “On some affine connections in manifolds with almost quaternion structure and homogeneous holonomy groups,” Tensor, 11(1): 57–73 (1961).MathSciNetMATHGoogle Scholar
  460. 455.
    H. Wakakuwa, “On affine connections in an almost-complex symplectic manifold,” Tensor, 11(2): 110–126 (1961).MathSciNetMATHGoogle Scholar
  461. 456.
    H. Wakakuwa, “On linearly independent almost-complex structures in a differentiate manifold,” Tohoku Math. J., 13(3): 393–422 (1961).MathSciNetMATHCrossRefGoogle Scholar
  462. 457.
    A. G. Walker, “On parallel fields of partially null vector spaces,” Quart. J. Math., 20(16): 135–145 (1949).MATHCrossRefGoogle Scholar
  463. 458.
    A. G. Walker, “Canonical form for a Riemannian space with a parallel field of null planes,” Quart. J. Math., Ser. 2, 1(1): 69–79 (1950).MATHCrossRefGoogle Scholar
  464. 459.
    A. G. Walker, “Canonical forms (II): Parallel partially null planes,” Quart. J. Math., Ser. 2, 1(2): 147–152 (1950).MATHCrossRefGoogle Scholar
  465. 460.
    A. G. Walker, “The fibering of Riemannian manifolds,” Proc. London Math. Soc., 3(9): 1–19 (1953).MathSciNetMATHCrossRefGoogle Scholar
  466. 461.
    A. G. Walker, “Connexions for the parallel distributions in the large,” Quart. J. Math., 6(24):301–308 (1955).MATHCrossRefGoogle Scholar
  467. 462.
    A. G. Walker, “Connexions for parallel distributions in the large, E,” Quart. J. Math., 9(35): 221–231 (1958).MATHCrossRefGoogle Scholar
  468. 463.
    A. G. Walker, “Distributions and global connexions,” in: Colloq. Géométrie Différent. Globale, Brussels, 1958, Paris-Louvain (1959), No. 52, p. 285–298.Google Scholar
  469. 464.
    A. G. Walker, “Almost-product structures. Differential geometry,” in: Proc. Sympos. Pure Math., Am. Math. Soc, Vol. 3, pp. 94–100 (1961).Google Scholar
  470. 465.
    A. West, “The projection of infinitesimal connections,” J. London Math. Soc, 40(3): 551–564 (1965).MathSciNetMATHCrossRefGoogle Scholar
  471. 466.
    T. I. Willmore, “Connexions for systems of parallel distributions,” Quart. J Math., 7(28): 269–276 (1956).MathSciNetMATHCrossRefGoogle Scholar
  472. 467.
    T. I. Willmore, “Parallel distributions on manifolds,” Proc. London Math. Soc, 6(22): 191–204 (1956).MathSciNetMATHCrossRefGoogle Scholar
  473. 468.
    T. I. Willmore, “Systems of parallel distributions,” J. London Math. Soc, 32(2): 153–156 (1957).MathSciNetMATHCrossRefGoogle Scholar
  474. 469.
    T. I. Willmore, “Global theorems on manifolds which admit distributions,” Sémin. Topol. et Géom. Différent. Ch. Ehresmann, Fac. Sci. Paris, 1957–1958, Issue 1, Paris (1959), pp. 18/1–18/7.Google Scholar
  475. 470.
    T. I. Willmore, “Connexions associated with foliated structures,” Ann. Inst. Fourier, 14(1): 43–47 (1964).MathSciNetMATHCrossRefGoogle Scholar
  476. 471.
    Y. G. Wong, “Fields of parallel planes in affinely connected spaces,” Quart. J. Math., 4(16): 241–253 (1953).MATHCrossRefGoogle Scholar
  477. 472.
    K. Yano, “On Walker differentiation in almost-product or almost-complex spaces,” Proc. Koninkl. Ned. Akad. Wetenschap., A61(5): 573–580 (1958)Google Scholar
  478. 472a.
    K. Yano, “On Walker differentiation in almost-product or almost-complex spaces,” Indagationes Math., 20(5): 573–580 (1958).Google Scholar
  479. 473.
    K. Yano, “Affine connexions in an almost-product space,” Kodai Math. Semin. Rept., 11(1): 1–24 (1959).MATHCrossRefGoogle Scholar
  480. 474.
    K. Yano, “On a structure f satisfying f 3 + f = 0,” Technical Report, University of Washington, No. 2 (1961).Google Scholar
  481. 475.
    K. Yano, “Eckmann-Frölicher connexions on almost-analytic submanifolds,” Kodai Math. Semin. Rept., 14(1): 53–58 (1962).MATHCrossRefGoogle Scholar
  482. 476.
    K. Yano, “On a structure defined by a tensor field f of type (1.1) satisfying f 3+ f = 0,” Tensor, 14: 99–109 (1963).MathSciNetMATHGoogle Scholar
  483. 477.
    K. Yano, “Tensor fields and connections on cross sections in the cotangent bundle,” Tohoku Math. J., 19(1): 32–48 (1967).MathSciNetMATHCrossRefGoogle Scholar
  484. 478.
    K. Yano and E. T. Davies, “On the tangent bundles of Finsler and Riemannian manifolds,” Rend. Circolo Mat. Palermo, 12(2): 211–228 (1963).MathSciNetMATHCrossRefGoogle Scholar
  485. 479.
    K. Yano and S. Ishihara, “On integrability conditions of a structure f satisfying f 3 + f = 0,” Quart. J. Math., Oxford, 15:217–222 (1964).MathSciNetMATHCrossRefGoogle Scholar
  486. 480.
    K. Yano and S. Ishihara, “Almost-contact structures induced on hypersurfaces in complex and almost-complex spaces,” Kodai Math. Semin. Rept., 17(3): 222–249(1965).MathSciNetMATHCrossRefGoogle Scholar
  487. 481.
    K. Yano and S. Ishihara, “Structure defined by F satisfying F3 + F = 0,” in: Proc. US-Japan Seminar Different. Geometry, Kyoto, 1965, Nippon Hyoronsha Co., Ltd., Tokyo (1966), pp. 153–166.Google Scholar
  488. 482.
    K. Yano and S. Ishihara, “The f-structure induced on submanifolds of complex and almost-complex spaces,” Kodai Math. Semin. Rept., 18(2): 120–160 (1966).MathSciNetMATHCrossRefGoogle Scholar
  489. 483.
    K. Yano and S. Ishihara, “Differential geometry in tangent bundle,” Kodai Math. Semin. Rept., 18(4): 271–292 (1966).MathSciNetMATHCrossRefGoogle Scholar
  490. 484.
    K. Yano and S. Ishihara, “Correction to the paper ‘The f-structure induced on submanifolds of complex and almost-complex spaces’,” Kodai Math. Semin. Rept., 18(4): 386 (1966).MathSciNetMATHCrossRefGoogle Scholar
  491. 485.
    K. Yano and S. Ishihara, “Almost-complex structures induced in tangent bundles,” Kodai Math. Semin. Rept., 19(1): 1–27 (1967).MathSciNetMATHCrossRefGoogle Scholar
  492. 486.
    K. Yano and S. Ishihara, “Horizontal lifts of tensor fields and connections to tangent bundles,” J. Math. Mech., 16(9): 1015–1029 (1967).MathSciNetMATHGoogle Scholar
  493. 487.
    K. Yano and S. Kobayashi, “Prolongations of tensor fields and connections to tangent bundles. I. General theory,” J. Math. Soc. Japan, 18(2): 194–210 (1966).MathSciNetMATHCrossRefGoogle Scholar
  494. 488.
    K. Yano and S. Kobayashi, “Prolongations of tensor fields and connections to tangent bundles. II. Infinitesimal automorphisms,” J. Math. Soc. Japan, 18(3): 236–246 (1966).MathSciNetMATHCrossRefGoogle Scholar
  495. 489.
    K. Yano and A. J. Ledger, “Linear connections on tangent bundles,” J. London Math. Soc, 39(3): 495–500 (1964).MathSciNetMATHCrossRefGoogle Scholar
  496. 490.
    K. Yano and Y. Muto, “Homogeneous contact structures,” Math. Ann., 167(3): 195–213 (1966).MathSciNetMATHCrossRefGoogle Scholar
  497. 491.
    K. Yano and E. M. Patterson, “Vertical and complete lifts from a manifold to its cotangent bundle,” J. Math. Soc. Japan, 19(1): 91–113 (1967).MathSciNetMATHCrossRefGoogle Scholar
  498. 492.
    K. Yanb and E. M. Patterson, “Horizontal lifts from a manifold to its cotangent bundle,” J. Math. Soc. Japan, 19(2): 185–198 (1967).MathSciNetCrossRefGoogle Scholar
  499. 493.
    I. Yokote, “On a foliated manifold with 1-dimensional distribution” Sci. Rept. Tokyo Kyoiku Daigaku, A9(202–208): 1–23 (1965).MathSciNetGoogle Scholar
  500. 494.
    I. Yokote, “On some properties of the tangent bundles of Riemannian manifolds which admit a skew-symmetric covariant tensor of order 2,” Sci. Rept. Tokyo Sect. A, 9:143–147 (1967).MathSciNetMATHGoogle Scholar
  501. 495.
    P. B. Zwart, “Compact homogeneous spaces possessing invariant contact, symplectic or cosymplectic structures,” Doctoral Dissertation, Washington University, 1965; Dissertation Abstr., 26(11): 6756 (1966).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • A. P. Shirokov

There are no affiliations available

Personalised recommendations