Advertisement

Class Field Theory. Field Extensions

  • S. P. Demushkin
Part of the Progress in Mathematics book series (PM, volume 9)

Abstract

In this brief survey on class field theory and related questions we mainly present the papers reviewed in the “Mathematics” section of Referativnyi Zhurnal during 1958–1967. Among the books published during this time we note those by Chevalley [20] (a systematic exposition and application of cohomology groups), Artin and Tate [12] (the most modern exposition of class field theory with the application of cohomology groups and of class systems; the ground field is either the field of algebraic numbers of finite degree or the field of functions of one variable over a finite field of constants), and Serre [99] (the connection of class field theory with algebraic curves). In 1963 there appeared a survey by Ribenboim [93] who set forth the results in the Hilbert — Takagi theory and the reciprocity law of Artin and who examined the problem of finding functions whose values could be generated by any Abelian extension of the field of algebraic numbers. On local class field theory we have the survey by Hochschild [43] (also see Samuel’s report [94] on Hochschild’s results: G. Hochschild, “Local class field theory,” Ann. Math., 51(2):331–347 (1950), where local class field theory is presented with the help of cohomologies).

Keywords

Galois Group Abelian Variety Number Field Class Number Class Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Browkin, “Examples of maximal 3-extensions with two ramification points,” Izv. Akad. Nauk SSSR, Ser. Mat., 27(3): 613–620 (1963).MathSciNetMATHGoogle Scholar
  2. 2.
    E. S. Golod and I. R. Shafarevich, “The class field tower,” Izv. Akad. Nauk SSSR, Ser. Mat., 28(2): 261–272 (1964).MathSciNetMATHGoogle Scholar
  3. 3.
    S. P. Demushkin, “The group of maximal p-extension of a local field,” Dokl. Akad. Nauk SSSR, 128(4): 657–660 (1959).MathSciNetMATHGoogle Scholar
  4. 4.
    S. P. Demushkin, “The group of maximal p-extension of a local field,” Izv. Akad. Nauk SSSR, 25(3): 329–346 (1961).Google Scholar
  5. 5.
    S. P. Demushkin, “The 2-extensions of a local field,” Sibirsk. Mat. Zh., 4(4): 951–955 (1963).MATHGoogle Scholar
  6. 6.
    Y. Kawada, “The connection between the various theories of Abelian extension and class field theory, Sugaku, 6(3): 129–150 (1954).Google Scholar
  7. 7.
    S. Lang, Algebraic Numbers, Addison-Wesley, Reading, Mass. (1964).MATHGoogle Scholar
  8. 8.
    G. I. Markshaitis, “p-Extensions with one critical number,” Izv. Akad. Nauk SSSR, Ser. Mat., 27(2): 463–466 (1963).MathSciNetGoogle Scholar
  9. 9.
    A. P. Novikov, “The class number of a field with complex multiplication,” Izv. Akad. Nauk SSSR, Ser. Mat., 26(5): 677–686 (1962).MathSciNetMATHGoogle Scholar
  10. 10.
    I. R. Shafarevich, “Extensions with specified ramification points,” Publ. Math. Inst. Hautes Études Scient., No. 18, pp. 71–95 (1963).Google Scholar
  11. 11.
    N. C. Ankeny, “Reciprocity theorem in cyclotomic fields,” Studies Math. Analysis and Related Topics, University Press, Stanford, Calif. (1962), pp. 8–15.Google Scholar
  12. 12.
    E. Artin and J. Tate, Class Field Theory, W. A. Benjamin, Inc., New York (1967).Google Scholar
  13. 13.
    W. L. Baily, “On the moduli of Abelian varieties with multiplications,” J. Math. Soc. Japan, 15(4): 367–386 (1963).MathSciNetGoogle Scholar
  14. 14.
    A. Borel, “Some properties of adele groups attached to algebraic groups,” Bull. Am. Math. Soc, 67(6): 583–585 (1961).MathSciNetMATHGoogle Scholar
  15. 15.
    A. Borel, “Some finiteness properties of adele groups over number fields,” Publ. Math. Inst. Hautes Études Scient., No. 16, pp. 101–126 (1963).MATHGoogle Scholar
  16. 16.
    R. Brauer, “Relations between class numbers,” in: Algebr., Geom. Conf. Notes, University of Chicago.Google Scholar
  17. 17.
    J. Browkin, “On the generalized class field tower,” Bull. Acad. Polon. Sci., Sér. Sci. Math., Astron. et Phys., 11(4): 143–145 (1963).MathSciNetMATHGoogle Scholar
  18. 18.
    A. Brumer, “Ramification and class towers of number fields,” Mich. Math. J., 12(2): 129–131 (1965).MathSciNetMATHGoogle Scholar
  19. 19.
    A. Brumer and M. Rosen, “Class number and ramification in number fields,” Nagoya Math. J., Vol. 23, pp. 91–101 (1963).MathSciNetGoogle Scholar
  20. 20.
    C. Chevalley, Class Field Theory, Nagoya University (1954), 104 pp.MATHGoogle Scholar
  21. 21.
    C. Chevalley, “Le théorème fondamental de la multiplication complexe,” Semin. Bourbaki Secrét. Math., 1956–1957. 9th year, 2nd ed., Paris (1959), pp. 138/1–138/13.Google Scholar
  22. 22.
    M. Deuring, “Die Klassenkörper der komplexen Multiplikation,” Erg. Math. Wiss., Vol. 1, No. 10, Part II (1958).MATHGoogle Scholar
  23. 23.
    K. Doi, “On the field of moduli of an Abelian variety with complex multiplication,” J. Math. Soc. Japan, 15(3): 237–243 (1963).MathSciNetMATHGoogle Scholar
  24. 24.
    B. Dwork, “Norm residue symbol in local number fields,” Abhandl. Math. Seminar Univ. Hamburg, 22(3–4): 180–190 (1958).MathSciNetMATHGoogle Scholar
  25. 25.
    W. Feit, “On p-regular extensions of local fields,” Proc. Am. Math. Soc, 10(4): 592–595 (1959).MathSciNetMATHGoogle Scholar
  26. 26.
    A. Fröhlich, “The genus field and genus group in finite number field,” Mathematika, 6(1): 40–46 (1959).MathSciNetGoogle Scholar
  27. 27.
    A. Fröhlich, “The genus field and genus group in finite number field. II,” Mathematika, 6(12): 142–146 (1959).Google Scholar
  28. 28.
    A. Fröhlich, “The rational characterization of certain sets of relatively Abelian extensions,” Phil. Trans. Roy. Soc. London, A25K998: 385–425 (1959).Google Scholar
  29. 29.
    A. Fröhlich, “A prime decomposition symbol for certain non-Abelian fields,” Acta Sci. Math., 21(3–4): 229–246 (1960).MATHGoogle Scholar
  30. 30.
    A. Fröhlich, “A remark on the classfield tower of the field (Math),” J. London Math. Soc, 37(2): 193–194 (1962).MathSciNetMATHGoogle Scholar
  31. 31.
    A. Fröhlich, “On nonramified extensions with prescribed Galois group,” Mathematika, 9(18): 133–134 (1962).MathSciNetMATHGoogle Scholar
  32. 32.
    G. Fujisaki, “On an example of an unramified Galois extension,” Sugaku, Vol. 9, pp. 97–99(1957/58).MathSciNetGoogle Scholar
  33. 33.
    Y. Furuta, “A reciprocity law of the power residue symbol,” J. Math. Soc. Japan, 10(1): 46–54 (1958).MathSciNetMATHGoogle Scholar
  34. 34.
    L. D. Geissinger, “A generalization of local class field theory,” Doctoral Dissertation, Indiana University, 1963, 48 pp. Dissertation Abstr., 24(7): 2921–2922 (1964).Google Scholar
  35. 35.
    K. W. H. Glass, “On extending a norm residue symbol,” Doctoral Dissertation, Indiana University, 1963, 41 pp. Dissertation Abstr., 24(7): 2922–2923 (1964).Google Scholar
  36. 36.
    K. L. Grant, “Abstract class formations,” Doctoral Dissertation, Indiana University, 1963, 38 pp. Dissertation Abstr., 25(1): 496–497 (1964).Google Scholar
  37. 37.
    K. L. Grant and G. Whaples, “Abstract class formations,” Bull. Am. Math. Soc, 67(4): 393–395 (1961).MathSciNetMATHGoogle Scholar
  38. 38.
    K. L. Grant and G. Whaples, “Correction to ‘Abstract class formations’,” Bull. Am. Math. Soc, 69(1): 123 (1963).MathSciNetGoogle Scholar
  39. 39.
    K. L. Grant and G. Whaples, “Abstract class formations,” J. Fac. Sci. Univ. Tokyo, Sec 1, 11(2): 187–194 (1965).MathSciNetMATHGoogle Scholar
  40. 40.
    H. Hasse, “Zum expliziten Reziprozitäsgesetz,” Arch. Math., 13(6): 479–485 (1962).MathSciNetMATHGoogle Scholar
  41. 41.
    H. Hasse, “Überden Klassenkörper zum quadratischen Zahlkörper mit der Diskriminante — 47,” Acta Arithm., 9(4): 419–434 (1964).MathSciNetMATHGoogle Scholar
  42. 42.
    H. Heilbronn, “Old theorems and new methods in class-field theory,” J. London Math. Soc, 37(1): 6–9 (1962).MathSciNetMATHGoogle Scholar
  43. 43.
    G. Hochschild, “Local class field theory,” in: Algebr. Geom. Conf. Notes, University of Chicago.Google Scholar
  44. 44.
    K. Hoechsmann, “Tagungsbericht Arbeitsgemeinschaft über das Klassenkör-perturmproblem, 18. bis 23. Oktober, 1964,” Math. Forschungsinst. Oberwolfach (1964).Google Scholar
  45. 45.
    K. Hoechsmann, “Zahlentheorie (insbesondere algebraische Zahlentheorie),” Math. Forschungsinst. Oberwolfach (1964).Google Scholar
  46. 46.
    L. Holzer, Zahlentheorie, Vol. II, No. 6, Teubner Verlagsgesellschaft, Leipzig (1959).Google Scholar
  47. 47.
    T. Honda, “On absolute class fields of certain algebraic number fields,” J. Reine und Angew. Math., 203(1–2): 80–89 (1960).MathSciNetMATHGoogle Scholar
  48. 48.
    Hsü Tao-ning, “Über den Hauptidealsatz für imaginäre quadratische Zahlkörper,” J. Reine und Angew. Math., 212(1–2): 49–62 (1963).Google Scholar
  49. 49.
    K. Iwasawa, “On Galois groups of local fields,” Trans. Am. Math. Soc, 80(2): 448–469(1955).MathSciNetMATHGoogle Scholar
  50. 50.
    K. Iwasawa, “On some invariants of cyclotomic fields,” Am. J. Math., 80(3): 773–783 (1958).MATHGoogle Scholar
  51. 51.
    K. Iwasawa, “On the theory of cyclotomic fields,” Ann. Math., 70(3): 530–561 (1959).MathSciNetMATHGoogle Scholar
  52. 52.
    K. Iwasawa, “On Γ-extensions of algebraic number fields,” Bull. Am. Math. Soc, 65(4): 183–226 (1959).MathSciNetMATHGoogle Scholar
  53. 53.
    K. Iwasawa, “On some properties of Γ-finite modules,” Ann. Math., 70(2): 291–312 (1959).MathSciNetMATHGoogle Scholar
  54. 54.
    K. Iwasawa, “On local cyclotomic fields,” J.Math. Soc. Japan, 12(l):16–21(1960).MathSciNetMATHGoogle Scholar
  55. 55.
    K. Iwasawa, “A class number formula for cyclotomic fields,” Ann. Math., 76(1): 171–179 (1962).MathSciNetMATHGoogle Scholar
  56. 56.
    K. Iwasawa and C. C. Sims, “Computations of invariants in the theory of cyclotomic fields,” J. Math. Soc. Japan, 18(1): 86–96 (1966).MathSciNetMATHGoogle Scholar
  57. 57.
    W. Jehne, “Zur modernen Klassenkörpertheorie,” Sitzsber. Deut. Akad. Wiss., Berlin, Kl. Math. Allgem. Naturwiss., No. 3 (1954).Google Scholar
  58. 58.
    W. Jehne, “Bermerkung über die p-Klassengruppe des p-ten Kreiskörpers,” Arch. Math., 10(6): 422–427 (1959).MathSciNetMATHGoogle Scholar
  59. 59.
    H. Kempfert, “Zum allgemeinen Hauptidealsatz,” J. Reine und Angew. Math., 21(1–2): 38–64(1962).Google Scholar
  60. 60.
    Y. Kawada, “Class formations,” Duke Math. J., 22(2): 165–177 (1955).MathSciNetMATHGoogle Scholar
  61. 61.
    Y. Kawada, “Class formations. III,” J. Math. Soc. Japan, Vol. 7, Suppl. Dec, pp. 453–490 (1955).MathSciNetMATHGoogle Scholar
  62. 62.
    Y. Kawada, “Class formations. IV, Infinite extension of the ground field,” J. Math. Soc, Japan, 9(4): 395–405 (1957).MathSciNetMATHGoogle Scholar
  63. 63.
    Y. Kawada, “Class formations. V. Infinite extensions of the p-adic field or the rational field,” J. Math. Soc Japan, 12(1): 34–64 (1960).MathSciNetMATHGoogle Scholar
  64. 64.
    Y. Kawada, “Class formations. VI. Restriction to a subfamily,” J. Fac. Sci. Univ. Tokyo, Sec. I, 8(2): 229–262 (1960).MathSciNetMATHGoogle Scholar
  65. 65.
    Y. Kawada, “Abstract class formations,” Bol. Soc. Mat. Sao Paulo, 15(1–2): 7–23 [1960 (1964)].MathSciNetGoogle Scholar
  66. 66.
    Y. Kawada and I. Satake, “Class formations. II,” J. Fac. Sci. Univ. Tokyo, Sec. I, 7(3): 353–389 (1956).MathSciNetMATHGoogle Scholar
  67. 67.
    E. F. Kennel, “Class field theory in dimension greater than one,” Doctoral Dissertation, University of Oregon, 1965, 68 pp. Dissertation Abstr., 26(9): 5462(1966).Google Scholar
  68. 68.
    H. Koch, “Über galoissche Erweiterungen D -adischen Zahlkörper,” J. Reine und Angew. Math., 209(1–2): 8–11 (1962).MATHGoogle Scholar
  69. 69.
    H. Koch, “Über maximale 1-Erweiterungen mit vorgeschriebenen Verzweigungsstellen,” Monatsber. Deut. Akad. Wiss. Berlin, 5(6): 341–343 (1963).MATHGoogle Scholar
  70. 70.
    H. Koch, “Über den 2-Klassenkörperum eines quadratischen Zahlkörpers. I,” J. Reine und Angew. Math., Vol. 214–215, pp. 201–206 (1964).Google Scholar
  71. 71.
    H. Koch, “1-Erweiterungen mit vorgegebenen Verzweigungsstellen,” J. Reine und Angew. Math., 219(1–2): 30–61 (1965).MATHGoogle Scholar
  72. 72.
    H. Koch, “1-Erweiterungen mit zwei Verzweigungsstellen,” Monatsber. Deut. Akad. Wiss. Berlin, 7(9): 616–623 (1965).MATHGoogle Scholar
  73. 73.
    H. Koch, “Über beschränkte Gruppen,” J. Algebra, 3(2): 206–224 (1966).MathSciNetMATHGoogle Scholar
  74. 74.
    M. Krasner, “Généralisations non-abéliennes de la théorie locale des corps de classes,“ Sémin. Bourbaki. Secrét. Math., 1950–1951, 3rd year, 2nd ed., Paris (1959), pp. 47/1–47/24.Google Scholar
  75. 75.
    T. Kubota, “Factor sets in a number field and the norma residue symbol,” J. Math. Soc. Japan, 11(2): 129–138 (1959).MathSciNetMATHGoogle Scholar
  76. 76.
    T. Kubota, “Reciprocities in Gauss’ and Eisenstein’s number fields,” J. Reine und Angew. Math., 208(1–2):35–50 (1961).MathSciNetMATHGoogle Scholar
  77. 77.
    T. Kubota, “On the field extensions by complex multiplication,” Trans. Am. Math. Soc, 118(6): 113–122 (1965).MathSciNetMATHGoogle Scholar
  78. 78.
    J. P. Labute, “Les groupes de Demuškin de rang dénombrable,” Compt. Rend. Acad. Sci., AB262(1): A4–A7 (1966).Google Scholar
  79. 79.
    J. P. Labute, “Demuskin groups of rank ℵo,” Bull. Soc. Math. France, 94(3): 211–244(1966).MathSciNetMATHGoogle Scholar
  80. 80.
    J. P. Labute, “Classification of Demuskin groups,” Can. J. Math., 19(1): 106–132(1967).MathSciNetMATHGoogle Scholar
  81. 81.
    E. Lamprecht, “Existenz von Zahlkörpem mit nicht abbrechendem Klassen-körperturm,” Arch. Math., 18(2): 140–152 (1967).MathSciNetMATHGoogle Scholar
  82. 82.
    S. Lang, “Unramified class field theory over function fields in several variables,” Ann. Math., 64(2): 285–325 (1956).MATHGoogle Scholar
  83. 83.
    K. Latt, “Über die Galoisgruppe des in bezug auf den Körper den rationallen Zahlen maximalen abelschen Körpers,” Wiss. Z. Humboldt-Univ. Berlin. Math.-Naturwiss. Reihe, 7(5): 583–608 (1957–1958).MathSciNetMATHGoogle Scholar
  84. 84.
    J. Lubin and J. Tate, “Formal complex multiplication in local fields,” Ann. Math., 81(2): 380–387 (1965).MathSciNetMATHGoogle Scholar
  85. 85.
    K. Masuda, “An application of the generalized norm residue symbol,” Proc. Am. Math. Soc, 10(2): 245–252 (1959).MathSciNetMATHGoogle Scholar
  86. 86.
    K. Meyer, Die Berechnung der Klassenzahl abelscher Körper über quadratischen Zahlkörpern, Berlin (1957).MATHGoogle Scholar
  87. 87.
    A. Moore, “On extending a norm residue symbol,” Doctoral Dissertation, Indiana University, 1962, 35 pp.Google Scholar
  88. 88.
    M. Mori, “Über die Klassenkörpertheorie für unendliche Erweiterungen von einem D -adischen Zahlkörper,” Proc. Japan Acad., 33(7): 376–379 (1957).MathSciNetMATHGoogle Scholar
  89. 89.
    J. R. Phillips, “Inclusion— transfer theorem of class field theory,” Doctoral Dissertation, Indiana University, 1965, 39 pp. Dissertation Abstr., 26(5): 2782 (1965).Google Scholar
  90. 90.
    K. Ramachandra, “Some applications of Kronecker’s limit formulas,” Ann. Math., 80(1): 104–108 (1964).MathSciNetMATHGoogle Scholar
  91. 91.
    H. Reichardt, “Ein Beweis des Hauptidealsatzes für imaginärquadratische Zahlkörper,”Math. Nachr., 17(3–6): 318–329 (1959).MathSciNetMATHGoogle Scholar
  92. 92.
    H. Reichardt, “Hauptidealsatz für imaginärquadratische Zahlkörper,” in: Atti Sesto Congr. Unione Mat. Ital. Tenuto Napoli, 11–16 Sett. 1959, Ed. Cremonese, Rome (1960).Google Scholar
  93. 93.
    P. Ribenboim, “Résultats et problèmes de la théorie des corps de classes,” Rev. Union Mat. Argent. y Asoc. Fis. Argent, Vol. 20, pp. 125–145 (1962).MathSciNetGoogle Scholar
  94. 94.
    P. Samuel, “Théorie du corps de classes local selon G. P. Hochschild,” Sémin. Bourbaki, Secrét. Math., 1950–1951, 3rd year, 2nd ed., Paris (1959), pp. 42/1–42/5.Google Scholar
  95. 95.
    O. F. G. Schilling, “On local class field theory,” J. Math. Soc. Japan, 13(3): 234–245 (1961).MathSciNetGoogle Scholar
  96. 96.
    Seminar on Complex Multiplication. Lecture Notes in Mathematics, Springer-Verlag, Berlin (1966).Google Scholar
  97. 97.
    J.-P. Serre, “Corps locaux et isogénies,” Sémin. Bourbaki, Secrét. Math., 1958–1959, 11th year, 3rd Part, 2nd ed., Paris (1959), pp. 185/1–185/9.Google Scholar
  98. 98.
    J.-P. Serre, “Classes des corps cyclotomiques,” Sémin. Bourbaki, Secrét. Math. 1958–1959, 11th year, 1st Part, 2nd ed., Paris (1959), pp. 174/1–174/11.Google Scholar
  99. 99.
    J.-P. Serre, “Groupes algébriques et corps de classes. (Actual. Scient, et Industr., No. 1264, publ. Inst. Math. Univ. Nancago, 7). Hermann, Paris (1959).MATHGoogle Scholar
  100. 100.
    J.-P. Serre, “Groupes proalgébriques,” Publ. Math. Inst. Hautes Études Sci., No. 7 [1960 (1961)].Google Scholar
  101. 101.
    J.-P. Serre, “Sur les corps locaux à corps résiduel algébriquement clos,” Bull. Soc. Math. France, 89(2): 105–154 (1961).MathSciNetMATHGoogle Scholar
  102. 102.
    J.-P. Serre, Cohomologie Galoisienne, 2nd ed., Berlin, Springer (1964).MATHGoogle Scholar
  103. 103.
    J.-P. Serre, “Existence de tours infinies de corps de classes d’après Golod et Safarevic,” Colloq. Internat. Centre Nat. Rech. Sci., No. 143, pp. 231–238 (1966).Google Scholar
  104. 104.
    G. Shimura, “On complex multiplication,” in: Tokyo Symposium on Algebraic Number Theory (1955), pp. 23–30.Google Scholar
  105. 105.
    G. Shimura, “On the class fields obtained by complex multiplication of Abelian varieties,” Osaka Math. J., 14(1):33–44 (1962).MathSciNetMATHGoogle Scholar
  106. 106.
    G. Shimura and Y. Taniyama, “Complex multiplication of Abelian varieties and its applications to number theory,” Publ. Math. Soc. Japan, No. 6 (1961).MATHGoogle Scholar
  107. 107.
    G. Shimura and Y. Taniyama, “Complex multiplication of Abelian varieties and its applications to number theory. S. 1,” Math. Soc. Japan (1961); Bull. Soc. Math. Belg., 16(1): 79–80 (1964).Google Scholar
  108. 108.
    K. Shiratani, “Note on the Kummer — Hilbert reciprocity law,” J. Math. Soc. Japan, 12(4): 412–421 (1960).MathSciNetMATHGoogle Scholar
  109. 109.
    K. Shiratani, “On the quadratic norm symbol in local fields,” J. Math. Soc. Japan, 13(4): 416–430 (1961).MathSciNetGoogle Scholar
  110. 110.
    Th. Skolem, “Remarks on proofs by cyclotomic formulas of reciprocity laws for power residues,” Math. Scand., 9(lb): 229–242 (1961).MathSciNetGoogle Scholar
  111. 111.
    S. Takahashi, “On Tannaka — Terada’s principal ideal theorem for rational ground field,” Tohoku Math. J., 17(1): 87–104 (1965).MathSciNetMATHGoogle Scholar
  112. 112.
    Y. Taniyama, “Jacobian varieties and number fields,” in: Tokyo Symposium on Algebraic Number Theory (1955), pp. 31–46.Google Scholar
  113. 113.
    T. Tannaka, “On the generalized principal ideal theorem,” in: Proc. Internat. Sympos. Algebr. Number Theory, 1955, Tokyo (1956), pp. 65–70.Google Scholar
  114. 114.
    T. Tannaka, “A generalized principal ideal theorem and a proof of a conjecture of Deuring,” Ann. Math., 67(3): 574–589 (1958).MathSciNetGoogle Scholar
  115. 115.
    J. Tate, “Multiplication complexe formelle dans les corps locaux,” Colloq. Internat. Centre Nat. Rech. Sci., No. 143, pp. 257–258 (1966).MathSciNetMATHGoogle Scholar
  116. 116.
    F. Terada, “Complex multiplication and principal ideal theorem,” Tohoku Math. J., Ser. 2, 6(1): 21–25 (1954).MathSciNetMATHGoogle Scholar
  117. 117.
    F. Terada, “On a generalized principal ideal theorem,” Tohoku Math. J., 6(2): 95–100 (1954).MathSciNetMATHGoogle Scholar
  118. 118.
    F. Terada, “A generalization of the principal ideal theorem,” J. Math. Soc. Japan, Vol. 7, Suppl. Dec, pp. 530–536 (1955).MathSciNetMATHGoogle Scholar
  119. 119.
    F. Terada, “A generalization of the principal ideal theorem,” in: Proc. Internat. Sympos. Algebr. Number Theory, 1955, Tokyo (1956), pp. 264–265.Google Scholar
  120. 120.
    A. Weil, “On the theory of complex multiplication,” in: Proc. Internat. Sympos. Algebr. Number Theory, 1955, Tokyo (1956), pp. 9–22.Google Scholar
  121. 121.
    A. Weil, “Sur la théorie du corps de classes,” Sémin. Bourbaki, Secrét Math., 1952–1953, 5th year, 2nd ed., Paris (1959), pp. 83/1–83/3.Google Scholar
  122. 122.
    E. Weiss, Algebraic Number Theory, McGraw-Hill, New York (1963).MATHGoogle Scholar
  123. 123.
    K. Yamamoto, “Isomorphism theorem in the local class field theory,” Mem. Fac. Sci. Kyushu Univ., A12(2): 67–102 (1958).Google Scholar
  124. 124.
    K. Yamamoto, “On the Kummer — Hilbert reciprocity law,” Mem. Fac. Sci. Kyushu Univ., A13(2): 85–95 (1959).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • S. P. Demushkin

There are no affiliations available

Personalised recommendations