Advertisement

The Theory of Best Approximation in Normed Linear Spaces

  • A. L. Garkavi
Part of the Progress in Mathematics book series (PM, volume 8)

Abstract

It is well known that the problem of best approximation of a function consists in the determination of a function belonging to a fixed family such that its deviation from the given function is a minimum, This problem was first formulated by P. L. Chebyshev, who investigated the approximation of continuous functions by algebraic polynomials of given degree and by rational fractions with numerators and denominators of fixed degree. As a measure of the deviation between two functions, Chebyshev used the maximum of the absolute value of their difference. Subsequently, a number of mathematicians have studied other specialized problems of best approximation whose content is defined by some choice of the measure of deviation and the function set used for the approximation. Among these, we should in the first place note A.A. Markov, Jackson, Bernshtein, de la Vallée-Poussin, Haar, and Kolmogorov. With the development of the theory of normed spaces it became clear that a wide range of problems of best approximation can be put into a general formulation in terms of normed spaces, if the norm of the space is taken as the measure of deviation.

Keywords

Banach Space Duality Theorem Constructive Theory NORMED Linear Space Positive Linear Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    G. P. Akilov and A. M. Rubinov, “The method of successive approximations for the derivation of the best-approximation polynomials,” Dokl. Akad. Nauk SSSR, 157(3):503–505 (1964).MathSciNetGoogle Scholar
  2. 2.
    V.I. Andreev, “Some problems associated with the convergence of positive linear operators,” Uch. Zap. Kalininsk. Gos. Ped. Inst., No. 29, 3–14 (1963).Google Scholar
  3. 3.
    M. Ya. Antonovskii, V. G. Boltyanskii, and T. A. Sarymsakov, “An outline of the theory of topological semi-fields,” Usp. Matem. Nauk, 21(4): 185–218 (1966).Google Scholar
  4. 4.
    N.I. Akhiezer, Lectures on Approximation Theory, Gostekhizdat, Moscow (1947).MATHGoogle Scholar
  5. 5.
    M.-B. A. Babaev, “On the best rational approximation of functions of two variables by functions of the form F(x) + Φ(y),” Izv. Akad. Nauk Azerbaidzhansk. SSR, Ser. Fiz.-Matem, i Tekhn. Nauk, No. 6, 25–40 (1962).MathSciNetGoogle Scholar
  6. 6.
    M.-B. A. Babaev, “On the best rational approximation of a function of n variables by functions of the form φ 1(x1) +...+ φ n(xn),” in: Contemporary Problems in the Constructive Theory of Functions, Akad. Nauk Azerbaidzhansk. SSR, Baku (1965), pp. 26–33.Google Scholar
  7. 7.
    M.-B. A. Babaev, “The uniqueness of the best approximating function in approximation of functions of many variables by sums of functions of one variable on generalized Lebesgue space,” Izv. Akad. Nauk Azerbaidzhansk. SSR, Ser. Fiz.-Tekhn. i Matem. Nauk, No. 3, 8–14 (1965).Google Scholar
  8. 8.
    S. Banach, A Course in Functional Analysis [in Ukrainian], Izd. “Radyan’ska Shkola,” Kiev (1948), 216 pp.Google Scholar
  9. 9.
    V. A. Baskakov, “Some conditions for the convergence of positive linear operators,” Usp. Matem. Nauk, 16(1): 131–134 (1961).MathSciNetMATHGoogle Scholar
  10. 10.
    P. K. Belobrov, “On the Chebyshev center of a set,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 1, 3–9 (1964).MathSciNetGoogle Scholar
  11. 11.
    P. K. Belobrov, “The problem of convex approximation in a normed space,” Uch. Zap. Kazansk. Univ., 125(2):3–6 (1966).MathSciNetMATHGoogle Scholar
  12. 12.
    P. K. Belobrov, “The Chebyshev center of a set in Banach space,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 2, 25–30 (1964).MathSciNetGoogle Scholar
  13. 13.
    P. K. Belobrov, “The Chebyshev point of a system of sets,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 6, 18–24 (1966).MathSciNetGoogle Scholar
  14. 14.
    P. K. Belobrov, “On a problem of Chebyshev approximation,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 2, 3–8 (1967).Google Scholar
  15. 15.
    V. I. Berdyshev, “On Chebyshev sets,” Dokl. Akad. Nauk Azerbaidzhansk. SSR, 22(9):3–5 (1966).MATHGoogle Scholar
  16. 16.
    V. G. Boltyanskii, S.S. Ryshkov, and Yu. A. Shashkin, “K-regular impeddings and their application to the theory of best approximation of functions,” Usp. Matem. Nauk, 15(6):125–132 (1960).Google Scholar
  17. 17.
    M. L. Brodskii, “On a necessary and sufficient criterion for a system of functions for which P.P. Korovkin’s theorem holds,” in: Research on Current Problems in the Constructive Theory of Functions, Fizmatgiz, Moscow (1961), pp. 318–323.Google Scholar
  18. 18.
    Yu. A. Brudnyi and I.E. Gopengauz, “On a problem of N. N. Luzin,” Dokl. Akad. Nauk SSSR, 113(1):12–15 (1957).MathSciNetGoogle Scholar
  19. 19.
    Yu. A. Brudnyi and I.E. Gopengauz, “The measure of the set of maximum-deviation points,” Izv. Akad. Nauk SSSR, Ser. Matem., 24(1):129–144 (1960).MathSciNetGoogle Scholar
  20. 20.
    Yu. A. Brudnyi and A. F. Timan, “Constructive properties of compact sets in Banach spaces and e -entropy,” Dokl. Akad. Nauk SSSR, 126(5):927–930 (1959).MathSciNetGoogle Scholar
  21. 21.
    Yu. A. Brudnyi and A. F. Timan, “Constructive characterization of compact sets in Banach spaces and e -entropy,” in: Research on Current Problems in the Constructive Theory of Functions, Fizmatgiz, Moscow (1961), pp. 324–328.Google Scholar
  22. 22.
    V.N. Burov, “Some effective methods for the solution of Chebysliev’s problem of best approximation,” Dokl. Akad. Nauk SSSR, 113(4):731–733 (1957).MathSciNetMATHGoogle Scholar
  23. 23.
    V. N. Burov, “The extremal properties of the coefficients of the test-approximation polynomial,” in: Research on Current Problems in the Constructive Theory of Functions, Fizmatgiz, Moscow (1961), pp. 20–26.Google Scholar
  24. 24.
    V.N. Burov, “Some theorems concerning the uniform approximation of functions by means of interpolation functions,” in: Research on Current Problems in the Constructive Theory of Functions, Fizmatgiz, Moscow (1961), pp. 18–20.Google Scholar
  25. 25.
    V.N. Burov, “The approximation of functions by polynomials subject to nonlinear constraints,” Dokl. Akad. Nauk SSSR, 138(3):515–517 (1961).MathSciNetGoogle Scholar
  26. 26.
    V.N. Burov, “Some problems of the uniform approximation of functions,” Uch. Zap. Leningr. Gos. Red. Inst. im. A.I. Gertsena, Vol. 218, 127–140 (1961).Google Scholar
  27. 27.
    V.N. Burov, “Approximation with constraints in linear normed spaces. I,” Ukrainsk. Matem. Zh., 15(1):3–12 (1963).MathSciNetMATHGoogle Scholar
  28. 28.
    V. N. Burov, “Approximation with constraints in linear normed spaces. 11,” Ukrainsk. Matem. Zh., 15(2):135–144 (1963).MathSciNetGoogle Scholar
  29. 29.
    V. N. Burov, “On tvo types of conditionally extremal problems and a general method of their investigation,” Ukrainsk. Matem. Zh., 17(2):107–111 (1965).MathSciNetMATHGoogle Scholar
  30. 30.
    V. S. Videnskii, “Uniform approximation in the complex plane,” Usp. Matem. Nauk, 11(5):169–175 (1956).MathSciNetGoogle Scholar
  31. 31.
    V. S. Videnskii, “Qualitative problems in the theory of best approximation of functions of a complex variable,” in: Research on Current Problems in the Theory of Functions of a Complex Variable, Fizmatgiz, Moscov (1960), pp. 258–272.Google Scholar
  32. 32.
    L. P. Vlasov, “Chefcyshev sets in Banach spaces,” Dokl. Akad. Nauk SSSR, 141(1): 19–20 (1961).MathSciNetGoogle Scholar
  33. 33.
    L. P. Vlasov, “Approximative convex sets in Banach spaces,” Dokl. Akad. Nauk SSSR, 163(1):18–21 (1965).MathSciNetGoogle Scholar
  34. 34.
    L. P. Vlasov, “Chebyshev sets,” Dokl. Akad. Nauk SSSR, 173(3):491–494 (1967).MathSciNetGoogle Scholar
  35. 35.
    L. P. Vlasov, “Approximative convex sets in uniformly smooth spaces,” Matem. Zametki, 1(4):443–450 (1967).MathSciNetGoogle Scholar
  36. 36.
    L. P. Vlasov, “Chebyshev and approximative convex sets,” Matem. Zametki, 2(2):191–200 (1967).MathSciNetGoogle Scholar
  37. 37.
    V.I. Volkov, “The convergence of a sequence of positive linear operators in the space of continuous functions of two variables,” Dokl. Akad. Nauk SSSR, 115(1):17–19(1957).MathSciNetMATHGoogle Scholar
  38. 38.
    V.I. Volkov, “Conditions for the convergence of sequences of positive linear operators in the space of continuous functions of two variables,” Uch. Zap. Kalininsk. Gos.Red. Inst., Vol. 26, 27–40 (1958).Google Scholar
  39. 39.
    V. I. Volkov, “Some properties of Chebyshev systems,” Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 26, 41–48 (1958).Google Scholar
  40. 40.
    V. I. Volkov, “Conditions for the convergence of sequences of positive linear operators in the space of continuous functions specified on closed surfaces,” Usp. Matem. Nauk, 15(1):181–184 (1960).MATHGoogle Scholar
  41. 41.
    V. I. Volkov, “The radius of the closure sphere in linear subspaces of some metric spaces,”Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 39, 6–9 (1964).Google Scholar
  42. 42.
    A. L. Garkavi, “The dimensionality of best-approximation polyhedra for differentiable functions,” Izv. Akad. Nauk SSSR, Ser. Matera., 23(1):93–114 (1959).MathSciNetMATHGoogle Scholar
  43. 43.
    A. L. Garkavi, “The simultaneous approximation of a periodic function and its derivatives by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Matem., 24(1):103–128 (1960).MathSciNetMATHGoogle Scholar
  44. 44.
    A. L. Garkavi, “Duality theorems for approximation by means of elements of convex sets,” Usp. Matem. Nauk, 16(4):141–145 (1961).MathSciNetMATHGoogle Scholar
  45. 45.
    A. L. Garkavi, “Linear-operator spaces,” Dokl. Akad. Nauk SSSR, 132(3):497–500 (1960).MathSciNetGoogle Scholar
  46. 46.
    A. L. Garkavi, “General refinement theorems,” Revue Math. Pures et Appl. (RPR), 6(2):293–303(1961).MathSciNetGoogle Scholar
  47. 47.
    A. L. Garkavi, “The Chebyshev center of a set in a normed space,” in: Research on Current Problems in the Constructive Theory of Functions, Fiz-matgiz, Moscow (1961), pp. 328–331.Google Scholar
  48. 48.
    A. L. Garkavi, “On the best net and the best section of a set in a normed space,” Izv. Akad. Nauk SSSR, Ser. Matem., 26(1):87–106 (1962).MathSciNetMATHGoogle Scholar
  49. 49.
    A. L. Garkavi, “On the best approximation by the elements of infinite-dimensional subspaces of a certain class,” Matem. Sbornik, 62(1): 104–120 (1963).MathSciNetGoogle Scholar
  50. 50.
    A. L. Garkavi, “Chebyshev and almost-Chebyshev subspaces,” Dokl. Akrd. Nauk SSSR, 149(6):1249–1252 (1963).MathSciNetGoogle Scholar
  51. 51.
    A. L. Garkavi, “The approximation properties of subspaces of finite defect in the space of continuous functions,” Dokl. Akad. Nauk SSSR, 155(4):513–516 (1964).MathSciNetGoogle Scholar
  52. 52.
    A. L. Garkavi, “The Chebyshev center and the convex hull of a set,” Usp. Matem. Nauk, 19(o):139–145 (1964).MathSciNetMATHGoogle Scholar
  53. 53.
    A. L. Garkavi, “On the criterion for the best-approximation element,” Sibirsk. Matem. Zh., 5(2):472–476 (1964).MathSciNetMATHGoogle Scholar
  54. 54.
    A. L. Garkavi, “Chebyshev and almost-Chebyshev subspaces,” Izv. Akad. Nauk SSSR, 28(4):799–818 (1964).MathSciNetMATHGoogle Scholar
  55. 55.
    A. L. Garkavi, “Chebyshev subspaces of finite defect in the space of summable functions,” Uch. Zap. Orekhovo-Zuevsk. Ped. Inst., 22(3):5–11 (1964).MathSciNetGoogle Scholar
  56. 56.
    A. L. Garkavi, “On the uniqueness of the solution of the L-problem of moments,” Izt. Akad. Nauk SSSR, Ser. Matem., 28(3):553–570 (1964).MathSciNetMATHGoogle Scholar
  57. 57.
    A. L. Garkavi, “Almost-Chebyshev systems of continuous functions,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 2, 36–44 (1965).MathSciNetGoogle Scholar
  58. 58.
    A. L. Garkavi, “The Helly problem and best approximation in the space of continuous functions,” Izv. Akad. Nauk SSSR, Ser. Matem., 31(3):641–656 (1967).MathSciNetMATHGoogle Scholar
  59. 59.
    A. L. Garkavi, “On compacts admitting Chebyshev systems of measures,” Matem. Sbornik, 74(2):209–217 (1967).MathSciNetGoogle Scholar
  60. 60.
    A. L. Gaikavi and A.M. Flomin, “The approximation properties of sets in some topological spaces,” Matem. Zametki, 2(5):523–529 (1967).Google Scholar
  61. 61.
    E. G. Gol’shtein, “A generalization of the Chebyshev problem of best approximation,” Usp. Matem. Nauk, 16(4):208–210 (1961).MathSciNetGoogle Scholar
  62. 62.
    E.G. Gol’shtein, “The problem of best Chebyshev approximation in the complex domain with additional conditions imposed on the coefficients of the approximating polynomial,” Dokl. Akad. Nauk SSSR, 141(2):274–276 (1961).MathSciNetGoogle Scholar
  63. 63.
    E.G. Gol’shtein, “A general formulation of the problem of best approximation,” Dokl. Akad. Nauk SSSR, 144(1):21–22 (1962).MathSciNetGoogle Scholar
  64. 64.
    N. Dunford and J. T. Schwartz, Linear Operators [Russiantranslation], IL, Moscow (1962), 895 pp. [English edition: John Wiley, New York.]Google Scholar
  65. 65.
    V. K. Dzyadyk, “The approximation of functions by positive linear operators and singular operators,” Matem. Sbornik, 70(4):508–517 (1966).Google Scholar
  66. 66.
    N. M. Day, Normed Linear Spaces [Russian translation], IL, Moscow (1961), 232 pp. [English edition: Academic Press, New York.]MATHGoogle Scholar
  67. 67.
    N. V. Efimov and S. B. Stechkin, “Some properties of Chebyshev sets,” Dokl. Akad. Nauk SSSR, 118(1): 17–19 (1958).MathSciNetMATHGoogle Scholar
  68. 68.
    N. V. Efimov and S. B. Stechkin, “Chebyshev sets in Banach spaces,” Dokl. Akad. Nauk SSSR, 121(4):582–585 (1958).MathSciNetMATHGoogle Scholar
  69. 69.
    N. V. Efimov and S. B. Stechkin, “Supporting properties of sets in Banach spaces and Chebyshev sets,” Dokl. Akad. Nauk SSSR, 127(2):254–257 (1959).MathSciNetMATHGoogle Scholar
  70. 70.
    N. V. Efimov and S. B. Stechkin, “Approximative compactness and Chebyshev sets,” Doll. Akad. Nauk SSSR, 140(3):522–524 (1961).Google Scholar
  71. 71.
    N. V. Efimov and S. B. Stechkin, “Chebyshev sets in Banach spaces,” in: Abstracts of Short Communications, ICM, Stockholm (1962), p. 71.Google Scholar
  72. 72.
    Z. V. Zaiits’ka, “Approximation of functions by linear positive operators in the Lp-metric,” Dopovidi Akad. Nauk Ukrain.RSR, No. 1, 14–17 (1967).Google Scholar
  73. 73.
    I. Singer, “The continuation of linear functionals,” Revue Math. Pures et Appl. (RPR), 1(2):115–123 (1956).Google Scholar
  74. 74.
    I. Singer, “On a theorem of I. M. Gel’fand,” Usp. Matem. Nauk, 17(1):169–176 (1962).MATHGoogle Scholar
  75. 75.
    S. I. Zukhovitskii, “Some theorems of the theory of Chebyshev approximation in Hubert space,” Matem. Sbornik, Vol. 37(79), No. 1, 3–20 (1955).Google Scholar
  76. 76.
    S.I. Zukhovitskii, “On the approximation of real functions in the sense of P. L. Chebyshev,” Usp. Matem. Nauk, 11(2):125–159 (1956).Google Scholar
  77. 77.
    S.I. Zukhovitskii, “A minimization problem in the space of continuous functions,” Dokl. Akad. Nauk SSSR, 108(3):383–384 (1956).MathSciNetGoogle Scholar
  78. 78.
    S. I. Zukhovitskii, “Minimal extensions of linear functional in the space of continuous functions,” Izv. Akad. Nauk SSSR, Ser. Matem., 21(3):409–422 (1957).Google Scholar
  79. 79.
    S.I. Zukhovitskii, “On the best approximation of functions in linear normed spaces and normed rings,” in: Functional Analysis and Its Applications, Akad. Nauk Azerbaizhansk. SSR, Baku (1961), pp. 86–88.Google Scholar
  80. 80.
    S. I. Zukhovitskii, “Chebyshev approximations of functions by closed operator-functions,” in: Research on Current Problems in the Constructive Theory of Functions, Fizmatgiz, Moscow (1961), pp. 331–334.Google Scholar
  81. 81.
    S.I. Zukhovitskii and M. G. Krein, “A remark on a possible generalization of the theorems of Haar and Kolmogorov,” Usp. Matem. Nauk, 5(1):217–229 (1950).Google Scholar
  82. 82.
    S.I. Zukhovitskii and S.B. Stechkin, “The approximation of abstract functions with values in Hubert space,” Dokl. Akad. Nauk SSSR, 106(3):385–388 (1956).MathSciNetGoogle Scholar
  83. 83.
    S. I. Zukhovitskii and S.B. Stechkin, “The approximation of abstract functions with values in Banach space,” Dokl. Akad. Nauk SSSR, 106(5):773–776 (1956).MathSciNetGoogle Scholar
  84. 84.
    S.I. Zukhovitskii and S. B. Stechkin, “The approximation of abstract functions,” Usp. Matem. Nauk, 12(1):187–191 (1957).Google Scholar
  85. 85.
    S. I. Zukhovitskii and G.I. Éskin, “The approximation of abstract continuous functions by unbounded operator-functions,” Dokl. Akad. Nauk SSSR, 116(5):731–734 (1957).MathSciNetGoogle Scholar
  86. 86.
    S. I. Zukhovitskii and G.I. Éskin, “The problem of Chebyshev approximation in a commutative Hubert ring,” Dokl. Akad. Nauk SSSR, 119(6):1074–1076 (1958).MathSciNetGoogle Scholar
  87. 87.
    S.I. Zukhovitskii and G.I. Éskin, “Chebyshev approximation in a Hilbert ring,” Dokl. Akad. Nauk SSSR, 118(5):870–872 (1958).MathSciNetMATHGoogle Scholar
  88. 88.
    S.I. Zukhovitskii and G. I. Éskin, “Some theorems concerning best approximation by unbounded operator-functions,” Izv. Akad. Nauk SSSR, Ser. Matem., 24(1):93–102 (1960).Google Scholar
  89. 89.
    G.I. Éskin and S.I. Zukhovitskii, “Some theorems on the Chebyshev approximation of functions with values in a commutative C* -algebra,” Dopovidi Akad. Nauk Uk. RSR, No. 4, 368–371 (1958).Google Scholar
  90. 90.
    L. M. Zybin, “On the conditions for the convergence of sequences of linear operators of class Sm,” Uch. Zap. Novgorodsk. Golovn. Ped. Inst., Vol. 7, 37–43 (1966).MathSciNetGoogle Scholar
  91. 91.
    V. K. Ivanov, “On linear incorrect problems,” Dokl. Akad. Nauk SSSR, 145(2):270–272(1962).MathSciNetMATHGoogle Scholar
  92. 92.
    V. K. Ivanov, “One type of incorrect linear equation in topological vector spaces,” Sibirsk. Matem. Zh 6(4):832–839 (1965).MATHGoogle Scholar
  93. 93.
    M. I. Kalets, “On the homeomorphism of some Banach spaces,” Dokl. Akad. Nauk SSSR, 92(3):465–468 (1953).Google Scholar
  94. 94.
    M. I. Kalets, “The distribution of the maximum-deviation points in the approximation of continuous functions by polynomials,” Usp. Matem. Nauk, 15(1):199–202 (1960).Google Scholar
  95. 95.
    V. S. Klimov, M. A. Krasnosel’skii, and E. A. Lifshits, “Smoothness points of a cone and the convergence of positive functionals and operators,” Trudy Mosk. Matem. Obshch., Vol. 15, 55–69 (1966).Google Scholar
  96. 96.
    A. N. Kolmogorov, “Remarks concerning Chebyshev polynomials that deviate least from a given function,” Usp. Matem. Nauk, 3(1):216–221 (1948).MathSciNetGoogle Scholar
  97. 97.
    A.N. Kolmogorov, “Some asymptotic properties of completely bounded metric spaces,” Dokl. Akad. Nauk SSSR, 108(3):385–388 (1956).MathSciNetMATHGoogle Scholar
  98. 98.
    P.P. Korovkin, “The convergence of positive linear operators in the space of continuous functions,” Dokl. Akad. Nauk SSSR, Vol. 90, 961–964 (1953),MathSciNetMATHGoogle Scholar
  99. 99.
    P. P. Korovkin, “The conditions for the uniqueness of the problem of moments and the convergence of sequences of linear operators,” Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 26, 95–102 (1958).MathSciNetGoogle Scholar
  100. 100.
    P.P. Korovkin, Linear Operators and Approximation Theory, Fizmatgiz, Moscow (1959), 211 pp.Google Scholar
  101. 101.
    P. P. Korovkin, “Converging sequences of linear operators,” Usp. Matem. Nauk, 17(4):147–152 (1962).MathSciNetMATHGoogle Scholar
  102. 102.
    P. P. Korovkin, “The conditions for the convergence of sequences of operators,” in: Research on Current Problems in the Constructive Theory of Functions, Akad. Nauk Azerbaidzhansk. SSR, Baku (1965), pp. 95–97.Google Scholar
  103. 103.
    V. D. Koromyslichenko, “On the direct and inverse problem of V. A. Markov in the complex domain,” Dokl. Akad. Nauk SSSR, 166(1):26–29 (1966).MathSciNetGoogle Scholar
  104. 104.
    M. A. Krasnosel’skii, V. S. Klimov, and E. A. Lifshits, “The convergence of positive functionals and operators,” Dokl. Akad. Nauk SSSR, 162(2):258–261 (1965).MathSciNetGoogle Scholar
  105. 105.
    M. G. Krein, “The L-problemin an abstract linear normed space,” in: I. Akhiezer and M. Krein, Some Problems in the Theory of Moments, GONTI, Khar’kov (1938).Google Scholar
  106. 106.
    Yu. I. Makovoz, “The Chebyshev subspaces of space C,” Usp. Matem. Nauk, 19(4):185–188 (1964).MathSciNetMATHGoogle Scholar
  107. 107.
    V. N. Malozemov, “The best-approximation matrix,” Vestn. Leningradsk. Univ., No. 19, 16–19 (1966).MathSciNetGoogle Scholar
  108. 108.
    V.N. Malozemov and A. P. Khvostov, “Best-approximation matrices,” Nauchn. Trudy Leningr. Mekhan. Inst., No. 50, 167–169 (1965).Google Scholar
  109. 109.
    R. G. Mamedov, “The approximation of a function of many variables by entire functions,” Trudy Azeib. Gos. Zaochn. Ped. Inst., 4(1):55–58 (1951).Google Scholar
  110. 110.
    A. I. Markushevich, “On the best approximation,” Dokl. Akad. Nauk SSSR, 44(7):290–292(1944).Google Scholar
  111. 111.
    B. S. Mityagin, “The connection between e -entropy, the rate of approximation, and nuclearity of a compact in linear space,” Dokl. Akad. Nauk SSSR, 134(4):765–768 (1960).Google Scholar
  112. 112.
    B. S. Mityagin, “Approximative dimensions and bases in kernel spaces,” Usp. Matem. Nauk, Vol. 16, 63–132 (1961).MathSciNetGoogle Scholar
  113. 113.
    B. S. Mityagin and G. M. Khenkin, “Inequalities between various n-widths,” Trudy Seminara po Funkts. Analizu, Voronezhskii Univ., No. 7, 97–103 (1963).Google Scholar
  114. 114.
    É. N. Morozov, “The convergence of sequences of positive linear operators in the space of continuous 2rr-periodic functions of two variables,” Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 26, 129–142 (1958).Google Scholar
  115. 115.
    É. N. Morozov, “The structure of sets for which Chebyshev systems exist,” Uch. Zap. Kalininsk. Gos. Ped. Inst., No. 9, 82–86(1961).Google Scholar
  116. 116.
    V. P. Motomyi, “On the problem of best approximation of functions of two variables by functions of the form φ(x) + ψ (y),” Izv. Akad. Nauk SSSR, Ser. Matem., 27(6):1211–1214 (1963).Google Scholar
  117. 117.
    I. P. Natanson and S. A. Agakhanov, “On the best approximation of a function of two variables,” Nauchn. Trudy Leningr. Mekhan. Inst., No. 50, 15–18 (1965).Google Scholar
  118. 118.
    V.N. Nikol’skii, “Some questions concerning best approximation in functional space,” Uch. Zap. Kalininsk. Inst., Vol. 16, 119–160 (1953–1954).Google Scholar
  119. 119.
    V. N. Nikol’skii, “The operator properties of the best-approximation polynomials,” Usp. Matem. Nauk, 12(3):353–358 (1957).Google Scholar
  120. 120.
    V.N. Nikol’skii, “The properties of the best-approximation operators,” Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 26, 143–146 (1958).Google Scholar
  121. 121.
    V. N. Nikol’skii, “The extension of Kolmogorov’s theorem to Banach spaces,” in: Research on Current Problems in the Constructive Theory of Functions, Fizmatgiz, Moscow (1961), pp. 335–337.Google Scholar
  122. 122.
    V.N. Nikol’skii, “On some properties of reflexive spaces,” Uch. Zap. Kalininsk.Gos. Ped. Inst., Vol. 29, 121–125 (1963).Google Scholar
  123. 123.
    V.N. Nikol’skii, “Best approximation by elements of convex sets in linear normedspaces,” Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 29, 85–119 (1963).Google Scholar
  124. 124.
    V.N. Nikol’skii, “Some remarks on spaces possessing Property B,” Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 39, 48–52 (1964).Google Scholar
  125. 125.
    V.N. Nikol’skii, “The characterization of the least deviating elements in convex sets,” in: Research on Current Problems in the Constructive Theory of Functions, Akad. Nauk Azerbaidzhansk. SSR, Baku (1965), pp. 80–84.Google Scholar
  126. 126.
    S. M. Nikol’skii, “Approximation of functions in the mean of trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Matem., 10(3):207–256 (1946).Google Scholar
  127. 127.
    Yu. P. Ofman, “On the best approximation of functions of two variables by functions of the type φ(x) + ψ(y),” Izv. Akad. Nauk SSSR, Ser. Matem., 25(2):239–252 (1961).MathSciNetMATHGoogle Scholar
  128. 128.
    V. Ya. Pan, “On one problem of N. N. Luzin,” Nauchn. Dokl. Vysshikh Shkoly, Fiz.-Matem. Nauki, No. 4, 59–62 (1958).Google Scholar
  129. 129.
    E. Ya. Remez, “Questions of uniqueness or multiplicity of the solutions of the Chebyshev problem for a system of inconsistent linear equations and the concept of a normal Chebyshev solution,” Ukrainsk. Matem. Zh., No. 1, 34–53(1956).MathSciNetGoogle Scholar
  130. 130.
    E. Ya. Remez, General Computational Methods for Chebyshev Approximation, Akad. Nauk Uk RSR, Kiev (1957), 454 pp.Google Scholar
  131. 131.
    E. Ya. Remez, “An extensive generalization of the Chebyshev minimax theorem and the corresponding analog of the fundamental Chebyshev —Markov theorem,” Dopovidi Akad. Nauk Uk. RSR, No. 6, 703–708 (1962).MathSciNetGoogle Scholar
  132. 132.
    E. Ya. Remez and V. D. Koromyslichenko, “The problem of V. A. Markov for polynomials of a Chebyshev system and the concept of a regular T-system,” Dokl. Akad. Nauk SSSR, 135(2):266–269 (1960).Google Scholar
  133. 133.
    Z. S. Romanova, “The dimensionality of best-approximation polyhedra in the space of continuous functions,” Liet. Matem. Rinkinys, 2(2): 181–191 (1963).MathSciNetGoogle Scholar
  134. 134.
    G. Sh. Rubinshtein, “On one method for the investigation of convex sets,” Dokl. Akad. Nauk SSSR, 102(3):451–454 (1955).MathSciNetGoogle Scholar
  135. 135.
    G. Sh. Rubinshtein, “The uniform approximation of a function by means of generalized rational functions,” Usp. Matem. Nauk, 15(3):232–234 (1960).MathSciNetGoogle Scholar
  136. 136.
    G. Sh. Rubinshtein, “Dual extremal problems,” Dokl. Akad. Nauk SSSR, 152(2):288–291 (1963).MathSciNetGoogle Scholar
  137. 137.
    G. Sh. Rubinshtein, “On one extremal problem in a linear normed space,” Sibirsk. Matem. Zh., 6(3):711–714 (1965).Google Scholar
  138. 138.
    B. A. Rymaienko and V. N. Burov, “Some conditionally extremal problems of Chebyshev approximation in the real domain,” in: Transactions of the Fourth All-Union Mathematical Congress, Vol. 2, Izd. “Nauka,” Leningrad (1964), pp. 680–683.Google Scholar
  139. 139.
    V.I. Smirnov and N. A. Lebedev, The Constructive Theory of Functions of a Complex Variable, “Nauka,” Moscow (1964), 438 pp.Google Scholar
  140. 140.
    S. B. Stechkin, “The approximation of abstract functions,” Revue Math. Pures et Appl. (RPR), 1(3):79–83 (1956).MATHGoogle Scholar
  141. 141.
    S. B. Stechkin, “The approximation properties of sets in linear normed spaces,” Revue Math. Pures et Appl. (RPR), 8(1):5–18 (1963).MATHGoogle Scholar
  142. 142.
    S. B. Stechkin, “The best approximation of linear operators,” Matem. Zametki, 1(2):137–148(1967).Google Scholar
  143. 143.
    A. F. Timan, Approximation Theory for Functions of a Real Variable, Fizmatgiz, Moscow (1960), 624 pp.Google Scholar
  144. 144.
    A. F. Timan, “On Uryson’s metrization theorem,” Dokl. Akad. Nauk SSSR, 150(1):52–53(1963).MathSciNetGoogle Scholar
  145. 145.
    A. F. Timan, “Onone problem in approximation theory concerning the superposition of functions,” Dokl. Akad. Nauk SSSR, 154(2):274–275 (1964).MathSciNetGoogle Scholar
  146. 146.
    A. F. Timan, “The deformation of metric spaces and some related problems in function theory,” Usp. Matem. Nauk, 20(2):53–87 (1965).MathSciNetGoogle Scholar
  147. 147.
    O.P. Timan [A. F. Timan], “On the mutual deviation of classes of real functions defined on an arbitrary compactum and with given majorants of the modulus of continuity,” Dopovidi Akad. Nauk Ukr. RSR, No. 11, 1416–1418 (1963).MathSciNetGoogle Scholar
  148. 148.
    V.M. Tikhornirov, “On the n-dimensional widths of some functional classes,” Dokl. Akad. Nauk SSSR, 130(4):734–737 (1960).Google Scholar
  149. 149.
    V. M. Tikhornirov, “Widths of sets in functional spaces and the theory of best approximations,” Usp. Matem. Nauk, 15(3):81–120 (1960).Google Scholar
  150. 150.
    V. M. Tikhornirov, “Some problems in approximation theory,” Dokl. Akad. Nauk SSSR, 160(4):774–777 (1965).MathSciNetGoogle Scholar
  151. 151.
    V.M. Tikhornirov, “One remark concerning the n-dimensional widths of sets in Banach spaces,” Usp. Matem. Nauk, 20(1):227–230 (1965).Google Scholar
  152. 152.
    V.M. Tikhomirov and S. B. Babadzhanov, “The widths of one functional class in space Lp(p ≥ l),” Izv. Akad. Nauk Uzbek. SSR, Ser. Fiz.-Matem. Nauk, No. 2, 24–30 (1967).Google Scholar
  153. 153.
    I. S. Tyuremskii, “Property B of Hilbert spaces,” Uch. Zap. Kalininsk.Gos. Ped. Inst., Vol. 39, 53–64 (1964).Google Scholar
  154. 154.
    I. S. Tyuremskii, “Chebyshev properties of sequences of subspaces in a Banach space,” Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 39, 73–75 (1964).Google Scholar
  155. 155.
    A. M. Flomin, “On best approximation by means of elements of convex sets in linear normed spaces over a semi-field,” Uch. Zap. Kalininsk. Gos. Ped. Inst., Vol. 39, 65–72 (1964).MathSciNetGoogle Scholar
  156. 156.
    S. Ya. Khavinson, “The problem of the uniqueness of the polynomial yielding the best approximation in the metric of space Llt” Dokl. Akad. Nauk SSSR, 105(6):1159–1161 (1955).MathSciNetGoogle Scholar
  157. 157.
    S. Ya. Khavinson, “The dimensionality of best-approximation polyhedra,” in: Collected Transactions of the Departments of Higher Mathematics and Theoretical Mechanics, No. 19, Mosk. Inzhenerno-Stroit. Inst. (1957), pp. 18–29.Google Scholar
  158. 158.
    S. Ya. Khavinson, “The uniqueness of the best-approximation function in the metric of space Llf”Izv. Akad. Nauk SSSR, Ser. Matem., 22(2):243–270 (1958).MathSciNetMATHGoogle Scholar
  159. 159.
    S. Ya. Khavinson, “On one class of problems for polynomials,” Dokl. Akad. Nauk SSSR, 130(5):997–1000 (1960).Google Scholar
  160. 160.
    S. Ya. Khavinson, “On two classes of extremal problems for polynomials and moments,” Izv. Akad. Kauk SSSR, Ser. Matem., 25(4):557–590 (1961).MATHGoogle Scholar
  161. 161.
    S. Ya. Khavinson, “Extremal and approximation problems with additional conditions,” in: Research on Current Problems in the Constructive Theory of Functions, Fizmatgiz, Moscow (1961), pp. 347–352.Google Scholar
  162. 162.
    S. Ya. Khavinson, “Approximation with the magnitudes of the coefficients of the approximating aggregates taken into account,” Trudy Matem. Inst. Akad. Nauk SSSR, Vol. 60, 304–324 (1961).MATHGoogle Scholar
  163. 163.
    S. Ya. Khavinson, “On approximation by elements of convex sets,” Dokl. Akad. Nauk SSSR, 172(2):294–297 (1967).MathSciNetGoogle Scholar
  164. 164.
    A. Ya. Khelemskii and G. M. Khenkin, “The imbedding of compacts in ellipsoids,” Vestn. MGU, Seriya 1, No. 2, 3–12 (1953).Google Scholar
  165. 165.
    I.V. Tsenov, “Some problems in the theory of approximation of functions in spaces C[a, b] and LS[a, b],” Izv. Vysshikh Uchebn. Zavedenii, Mateinatika, No. 4, 184–194(1959).Google Scholar
  166. 166.
    I.V. Tsenov, “Generalization of the problem of the best approximation of functions in the space LS,” Uch. Zap. Dagestansk. Univ., Vol. 7, 25–37 (1961).Google Scholar
  167. 167.
    I.V. Tsenov, “On the best integral approximation,” in: Research on Current Problems in the Constructive Theory of Functions, Akad. Nauk Azerbaidzhansk. SSR, Baku (1965), pp. 89–94.Google Scholar
  168. 168.
    A. S. Tsereteli, “The approximation of functions of two variables by functions of the type φ(x) + ψ(y),” Soobshch. Akad. Nauk Gruzinsk. SSR, 44(3):545–547 (1966).Google Scholar
  169. 169.
    Yu. A. Shashkin, “The convergence of positive linear operators in the space of continuous functions,” Dokl. Akad. Nauk SSSR, 131(3):525–527 (1960).MathSciNetGoogle Scholar
  170. 170.
    Yu. A. Shashkin, “Korovkin systems in spaces of continuous functions,” Izv. Akad. Nauk SSSR, Ser. Matem., 26(4):495–512 (1962).MATHGoogle Scholar
  171. 171.
    Yu. A. Shashkin, “Topological properties of sets associated with the theory of function approximation,” Izv. Akad. Nauk SSSR, Ser. Matem., 29(5): 1085–1094(1965).MathSciNetMATHGoogle Scholar
  172. 172.
    Yu. A. Shashkin, “Finitely-defined linear operators in the spaces of continuous functions,” Usp. Matem. Nauk, 20(6):l75–180 (1965).Google Scholar
  173. 173.
    Yu. A. Shashkin, “On best approximation by means of rational functions,” Dokl. Bolgarsk. Akad. Nauk, 19(1):5–7 (1966).MATHGoogle Scholar
  174. 174.
    Yu. A. Shashkin, “Interpolation families of functions and imbedding of sets in Euclidean and projective spaces,” Dokl. Akad. Nauk SSSR, 174(5):1030–1032 (1967).MathSciNetGoogle Scholar
  175. 175.
    Yu. A. Shashkin, “The Milman-C hoquet boundary and approximation theory,” Funktsional. Analiz i Ego Prilozhen., 1(2):95–96 (1967).Google Scholar
  176. 176.
    Yu. A . Shashkin, The Theory of Approximation in Linear Normed Spaces, Urarskii Gos. Univ., Sverdlovsk (1967), 44 pp.Google Scholar
  177. 177.
    A. N. Sherstnev, “Best-approximation problems in random normed spaces,” Dokl. Akad. Nauk SSSR, 149(3):539–542 (1963).MathSciNetGoogle Scholar
  178. 178.
    A. N. Sherstnev, “Some problems of best approximation in random normed spaces,” Revue Roumaine Math. Pures et Appl., 9(8):771–789 (1964).MATHGoogle Scholar
  179. 179.
    K. G. Arrow, L. Hurwitz, and H. Udzawa, Investigations in Linear and Nonlinear Programming [Russian translation], Izd. in. Lit., Moscow (1962), 334 pp.Google Scholar
  180. 180.
    G. Ya. Yarakhmedov, “One generalization of the concept of a Chebyshev system,” Uch. Zap. Kazansk. Univ., 124(6):331–340 (1964).Google Scholar
  181. 181.
    G. Ya. Yarakhmedov, “On one property of a measurable function,” Vestn. Leningr. Univ., No. 19, 76–82 (1964).MATHGoogle Scholar
  182. 182.
    G. Ya. Yarakhmedov, “On P. L. Chebyshev’s basic theorem,” Usp. Matem. Nauk, 20(5):251–256 (1965).Google Scholar
  183. 183.
    G. Ya. Yarakhmedov, “The approximation of functions in space Lp,” in: Collected Scientific Transactions of Leningrad Mechanical Institute, No. 50 (1965), pp. 242–247.Google Scholar
  184. 184.
    G. Ya. Yarakhmedov, “On the question of the uniqueness of the polynomial of the best approximation in the metric of M,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 6, 177–186 (1966).Google Scholar
  185. 185.
    G. Albinus, “Ein Beitrag zur approximativen Kompaktheit,” Rev. Roumaine Math. Pures et Appl., 11(7):793–797 (1966).MathSciNetMATHGoogle Scholar
  186. 186.
    G. Albinus, “Einige Beiträge zur jApproximationstheorie in metrischen Vektorräumen,” Wiss. Z. Techn. Univ. Dresden, 15(1):1–4 (1966).MathSciNetMATHGoogle Scholar
  187. 187.
    G. Albinus and G. Aumann, “Approximation by step functions,” Proc. Am. Math. Soc., 14(3):477–482 (1963).Google Scholar
  188. 188.
    U. Barbuti, “Sulla teoria delia migliore approssimazione nel senso di Tchebychev,” Rend. Seminar. Mat. Univ. Padova, 30(1):82–96 (1960).MathSciNetMATHGoogle Scholar
  189. 189.
    U. Barbuti, “Sulla teoria delia migliore approssimazione nel senso di Tchebychev. II,” Rend. Seminar. Mat. Univ. Padova, 30(2):302–308 (1960).MathSciNetMATHGoogle Scholar
  190. 190.
    G. Birkhoff and C. R. de Boor, “Piecewise polynomial interpolation and approximation, ” in: H. L. Garabedian (ed.), Approximation of Functions, Elsevier Publishing Co., Amsterdam (1965), pp. 164–190.Google Scholar
  191. 191.
    E. Bishop and R. R. Phelps, “A proof that every Banach space is subreflexive,” Bull. Am. Math. Soc., 67(1):97–98 (1961).MathSciNetMATHGoogle Scholar
  192. 192.
    B. Boehm, “Existence of best rational Tchebycheff approximations,” Pacif. J.Math., 15(1):19–28 (1965).MathSciNetMATHGoogle Scholar
  193. 193.
    H. Bohman, “On approximation of continuous functions and analytic functions,” Arkiv. Math., 2(3):43–56 (1952).MathSciNetMATHGoogle Scholar
  194. 194.
    J. Bram, “Chebyshev approximation in locally compact spaces,” Proc. Am. Math. Soc., 9(1):133–136(1958).MathSciNetMATHGoogle Scholar
  195. 195.
    A. Brtfndsted, “Convex sets and Chebyshev sets,” Math. Scand., 17(1):5–16 (1965).MathSciNetGoogle Scholar
  196. 196.
    A. Brtfndsted, “Convex sets and Chebyshev sets. II,” Math. Scand., 18(1):5–15 (1966).MathSciNetGoogle Scholar
  197. 197.
    B. Brosowski, “Über die Eindeutigkeit der rationalen Tschebysche ff-Approximationen,” Numer. Math., 7(2):176–186 (1965).MathSciNetMATHGoogle Scholar
  198. 198.
    B. Brosowski, “Über Tschebyscheffsche Approximationen mit linearen Neben-becingungen,” Math. Z., 88(2):105–128 (1965).MathSciNetMATHGoogle Scholar
  199. 199.
    B. Brosowski, “Über Tschebyscheffsche Approximationen mit verallgemeinerten rationalen Funktionen,” Math. Z., 90(2):140–151 (1965).MathSciNetMATHGoogle Scholar
  200. 200.
    A. L. Brown, “Best n-dimensional approximation to sets of functions,” Proc. London Math. Soc., 14(56):577–594 (1964).MathSciNetMATHGoogle Scholar
  201. 201.
    R. C. Buck, “Applications of duality in approximation theory,” in: H. L. Garabedian (ed.), Approximation of Functions, Elsevier Publishing Co., Amsterdam (1965), pp. 27–42.Google Scholar
  202. 202.
    E. V. Cheney, “Approximation by generalized rational functions,” in: H. L. Garabedian (ed.), Approximation of Functions, Elsevier Publishing Co., Amsterdam (1965), pp. 101–110.Google Scholar
  203. 203.
    E. W. Cheney, “An elementary proof of Jackson’s theorem on mean-approximation,” Math. Mag., 38(4):189–191 (1965).MathSciNetMATHGoogle Scholar
  204. 204.
    E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York (1968), 259 pp.Google Scholar
  205. 205.
    E. W. Cheney and A. Goldstein, “Proximity maps for convex sets,” Proc Am. Matt. Soc., 10(3):448–450 (1959).MathSciNetMATHGoogle Scholar
  206. 206.
    E. W. Cheney and A. Goldstein, “Tchebycheff approximations in locally convex spaces,” Bull. Am. Math. Soc., 68(5):449–450 (1962).MathSciNetMATHGoogle Scholar
  207. 207.
    E. W. Cheney and A. Goldstein, “Tchebycheff approximation and related extremal problems,” J. Math, and Mech., 14(1):87–98 (1965).MathSciNetMATHGoogle Scholar
  208. 208.
    E. W. Cheney and H. L. Loeb, “Generalized rational approximation,” J. Soc.Ind. Appl. Math., Ser. B, Vol. 1, 11–25 (1964).MathSciNetGoogle Scholar
  209. 209.
    E. W. Cheney and D. E. Wulbert, “The existence and unicity of best approximations,” University of Lund preprint (1966).Google Scholar
  210. 210.
    E. W. Cheney, H. Choda, and M. Echigo, “On theorems of Korovkin,” Proc Japan. Acad., 39(2):107–108 (1963).MathSciNetGoogle Scholar
  211. 211.
    G. Choquet, “Sur la meilleure approximation dans les espaces vectoriels normes,” Rev. Math. Pures et Appl. (RPR), 8(4):541–542 (1963).MathSciNetMATHGoogle Scholar
  212. 212.
    L. Collatz, “Approximation von Funktionen bei einer und mehreren unabhängigen Veränderlichen,” Z. Angew. Math, und Mech., 36(5–6): 198–211 (1956).MathSciNetMATHGoogle Scholar
  213. 213.
    L. Collatz, “Inclusion theorems for the minimal distance in rational Tscheby-scheff approximation with several variables,” in: H. L. Garabedian (ed), Approximation of Functions, Elsevier Publishing Co., Amsterdam (1965), pp. 43–46.Google Scholar
  214. 214.
    P. C. Curtis, Jr., “n-Parameter families and best approximation,” Pacif. J. Math., 9(4):1013–1027 (1959).MathSciNetMATHGoogle Scholar
  215. 215.
    J. Descloux, “Approximations in Ln and Chebyshev approximations,” J. Soc. Ind. Appl. Math., 11(4):1017–1026 (1963).MathSciNetGoogle Scholar
  216. 216.
    M. Edelstein, “Farthest points of sets in uniformly convex Banach spaces,” Israel. J. Math., 4(3):171–176 (1966).MathSciNetMATHGoogle Scholar
  217. 217.
    Ky Fan and J. Glicksberg, “Some geometric properties of spheres in normed linear spaces,” Duke Math. J., 25(4):553–568 (1958).MathSciNetMATHGoogle Scholar
  218. 218.
    P. Franck, “Sur la plus courte distance d’un opérateur aux opérateurs dont le noyau contient un ensemble donné ou est de dimension au moins égale à un nombre donné,” Compt. Rend. Acad. Sci., 263(12):A388–A389 (1966).MathSciNetGoogle Scholar
  219. 219.
    G. Freud, “Eine Ungleichung für Tschebyscheffsche Approximations polynôme,” Acta Scient. Mat., 19(3–4):162–164 (1958).MathSciNetMATHGoogle Scholar
  220. 220.
    G. Freud, “Über positive lineare Approximationsfolgen von stetigen reelen Funktionen auf kompakten Mengen,” in: On Approximation Theory, Bir-khäuser Verl., Basel-Stuttgart (1964), pp. 233–238.Google Scholar
  221. 221.
    M. Golomb, “Optimal approximating manifolds in L2-spaces,” J. Math. Analysis and Applic, 12(3):505–512 (1965).MathSciNetMATHGoogle Scholar
  222. 222.
    M. A. Hanson, “Error bounds in constrained best approximation,” J. Soc. Ind. Appl. Math., B2(S):473–479 (1965).MathSciNetGoogle Scholar
  223. 223.
    R. Hirschfeld, “Sur la théorie généale des meilleures approximations,” Compt. Rend. Acad. Sci., 246(10):1485–1488 (1958).MathSciNetMATHGoogle Scholar
  224. 224.
    R. Hirschfeld, “On best approximations in normed vector spaces. II,” Nieuw Arch. Wiskunde, 6(3):99–107 (1958).MathSciNetGoogle Scholar
  225. 225.
    R. B. Holmes, “Approximating best approximations,” Nieuw Arch. Wiskunde, 14(2):106–113 (1966).Google Scholar
  226. 226.
    J. Ikebe, A Study of Operators in Approximation Theory, Doctoral Dissertation, University of Texas (1966); Dissertation Abstr., B27(8):2780 (1967).Google Scholar
  227. 227.
    K. Iseki, “An approximation problem in quasi-normed spaces,” Proc. Japan, Acad., 35(8):465–466 (1959).MathSciNetMATHGoogle Scholar
  228. 228.
    V. Istratescu, “Über die Banachräume mit zählbarer Basis. I,” Rev. Math. Pures et Appl. (RPR), 7(3):481–482 (l962).MathSciNetGoogle Scholar
  229. 229.
    V. Istratescu, “Asupra spatiilor Banach eu bazä numärabilä. II,” Studii Ci Cercetäri Mat. Acad. RPR, 15(5):665–667 (1964).MathSciNetGoogle Scholar
  230. 230.
    R. C. James, “Characterizations of reflexivity,” Studia Math., 23(3):205–216 (1964).MathSciNetMATHGoogle Scholar
  231. 231.
    V. L. Klee, “Convex bodies and periodic homeomorphisms in Hubert space,” Trans. Am. Math. Soc., 74(1):10–43 (1953).MathSciNetMATHGoogle Scholar
  232. 232.
    V. L. Klee, “Circuinspheres and inner products,” Math. Scand., 8(2):363–370 (1960).MathSciNetGoogle Scholar
  233. 233.
    V. L. Klee, “Convexity of Chebyshev sets,” Math. Ann., 142(3):292–304 (1961).MathSciNetMATHGoogle Scholar
  234. 234.
    V.L. Klee, “Remarks on nearest points in normed linear spaces,” Notices Am. Math. Soc., 12(7):812 (1965).Google Scholar
  235. 235.
    A. N. Kolmogorov, “Über die beste Annäherung von Fuktionen einer gegebenen Funktionenklasses,” Ann. Math., Vol. 37, 107–110 (1936).MathSciNetMATHGoogle Scholar
  236. 236.
    I. Kolumban, “A theorem regarding the best approximation in abstract spaces,” Mathematica (RPR), 2(2):277–280 (1960).MathSciNetGoogle Scholar
  237. 237.
    B. R. Kripke, “Best approximation with respect to nearby norms,” Numer. Math., 6(2):103–105 (1964).MathSciNetMATHGoogle Scholar
  238. 238.
    B. R. Kripke and R. B. Holms, “Approximation of bounded functions by continuous functions,” Bull. Am. Math. Soc., 71(6):896–897 (1965).MATHGoogle Scholar
  239. 239.
    B. R. Kripke and T. J. Rivlin, “Approximation in the metric of L1(X, µ),” Trans. Am. Math. Soc., 119(1):101–122 (1965).MathSciNetMATHGoogle Scholar
  240. 240.
    B. R. Kripke and R. T. Rockafellar, “A necessary condition for the existence of best approximations,” J. Math, and Mech., 13(6):1037–1038 (1964).MathSciNetMATHGoogle Scholar
  241. 241.
    B. Lago, “Meileures solution de «Au-g» ,” Chiffres, 6(1):29–38 (1963).MathSciNetMATHGoogle Scholar
  242. 242.
    P.-J. Laurent, “Généralisation de l’algorithme de Rémès pour l’obtention d’une meilleure approximation dans un espace norme,” Compt.Rend. Acad. Sci., 264(1):A22–A24 (1967).MathSciNetGoogle Scholar
  243. 243.
    C. L. Lawson, “Characteristic properties of the segmented rational minimax approximation problem,” Numer. Math., 6(4):293–301 (1964).MathSciNetMATHGoogle Scholar
  244. 244.
    B. L. Lin, “Distance-sets in normed vector spaces,” Nieuw Arch. Wiskunde, 14(1):23–30 (1966).MATHGoogle Scholar
  245. 245.
    R. Long, “A T-system which is not a Bernstein system,” Proc. Am. Math. Soc., 8(5) (1957).Google Scholar
  246. 246.
    J. A. Lutts, “Topological spaces which admit unisolvent systems,” Trans. Am. Math. Soc., 111(3):440–448 (1964).MathSciNetMATHGoogle Scholar
  247. 247.
    T. J. McMinn, “On the line segments of a convex surface in E3,” Pacif. J. Math., 10(3): 943–946 (1960).MathSciNetMATHGoogle Scholar
  248. 248.
    H. Maehly and C. Witzgall, “Tschebyscheff-Approximationene in kleinen Intervalen. II. Stetigkeitssätze für gebrochene rationale Approximationen,” Numer. Math., 2(5):193–309 (1960).Google Scholar
  249. 249.
    J. C. Mairhuber, “On Haar’s theorem concerning Chebyshev approximation problems having unique solutions,” Proc. Am. Math. Soc., 7(4):609–615 (1956).MathSciNetMATHGoogle Scholar
  250. 250.
    G. Meinardus, “Über den Haarschen Eindeutigkeitssätz aus der Theorie der linearen Approximationen,” Arch. Math., 14(1):47–54 (1963).MathSciNetMATHGoogle Scholar
  251. 251.
    G. Meinardus, Approximation von Funktionen und ihre numerische Behandlung (Ergebn. Angew. Math., Vol. 4), Springer, Berlin (1964), 180 pp.Google Scholar
  252. 252.
    G. Meinardus and D. Schwedt, “Nicht-lineare approximationen,” Arch. Rational Mech. and Analysis, 17(4):297–326 (1964).MathSciNetMATHGoogle Scholar
  253. 253.
    R. M. Moroney, “The Haar problem in L1,” Proc. Am. Math. Soc., 12(5):793–795 (1961).MathSciNetMATHGoogle Scholar
  254. 254.
    P.D. Morris, “Metrie projections onto subspaces of finite codimensions,” Pennsylvania State University Preprint (1967).Google Scholar
  255. 255.
    T. S. Motzkin and J. L. Walsh, “Polynomials of best approximation on a real finite point set. I,” Trans. Am. Math. Soc., 91(2):231–245 (1959).MathSciNetMATHGoogle Scholar
  256. 256.
    T. S. Motzkin and J. L. Walsh, “Mean approximation on an interval for an exponent less than one,” Trans. Am. Math. Soc., 122(2):443–510 (1966).MathSciNetMATHGoogle Scholar
  257. 257.
    D. G. Moursund, “Chebyshev approximations of a function and its derivatives,” Math, of Computation, 18(87):382–389 (1964).MathSciNetMATHGoogle Scholar
  258. 258.
    R. Nakamoto and M. Nakamura, “On the theorems of Korovkin. II,” Proc. Japan. Acad., 41(6):433–435 (1965).MathSciNetMATHGoogle Scholar
  259. 259.
    D. J. Newman and H. S. Shapiro, “Some theorems on Cebysev approximations,” Duke Math. J., 30(4):673–681 (1963).MathSciNetMATHGoogle Scholar
  260. 260.
    D. J. Newman and H. S. Shapiro, “Approximation by generalized rational functions,” in: On Approximation Theory, Birkhauser Verl., Basel (1964), pp. 245–251.Google Scholar
  261. 261.
    H. V. Nguyen, “Seminorme duale généralisée et approximation d’un vecteur,” Compt. Rend. Acad. Sci., 262(26):A1456–A1459 (1966).Google Scholar
  262. 262.
    S. Paszkowski, “Sur l’approximation uniforme avec des noeuds,” Ann. Polon. Math., 2(1):118–135 (1955).MathSciNetMATHGoogle Scholar
  263. 263.
    S. Paszkowski, The Theory of Uniform Approximation. I. Non-Asymptotic Theoretical Problems, Rozpr. Mat., No. 26 (1962), 177 pp.MathSciNetGoogle Scholar
  264. 264.
    R. R. Phelps, “Convex sets and nearest points,” Proc Am. Math. Soc., 8(4):790–797 (1957).MathSciNetMATHGoogle Scholar
  265. 265.
    R. R. Phelps, “Convex sets and nearest points. II,” Proc Am. Math. Soc., 9(6):867–873 (1958).MathSciNetGoogle Scholar
  266. 266.
    R. R. Phelps, “Uniqueness of Hahn-Banach extensions and unique best approximations,” Trans. Am. Math. Sec, 95(2):238–255 (1960).MathSciNetMATHGoogle Scholar
  267. 267.
    R. R. Phelps, “Cebysev subspaces of finite codimension in C(X),” Pacif. J. Math., 13(2):647–655 (1963).MathSciNetMATHGoogle Scholar
  268. 268.
    R. R. Phelps, “Cebysev subspaces of finite dimension in L1,” Proc Am. Math. Soc., 17(3):646–652 (1966).MathSciNetMATHGoogle Scholar
  269. 269.
    V. Pták, “A remark on approximation of continuous functions,” Chekhosl. Matem. Zh., 8(2):251–256 (1958).Google Scholar
  270. 270.
    V. Ptäk, “On approximation of continuous functions in the metric \(\int\limits_a^b {\left| {x\left( t \right)} \right|} dt \)”. Chekhosl. Matern. Zh., 8(2):267–273 (1958).Google Scholar
  271. 271.
    J. R. Reitherford, “On Cebysev subspaces and unconditional bases in Banach spaces,” Bull. Am. Math. Soc., 73(2):238–241 (1967).Google Scholar
  272. 272.
    J. R. Rice, “The characterization of best nonlinear Tchebycheff approximations,” Trans. Am. Math. Soc., 96(2):322–340 (1960).MathSciNetMATHGoogle Scholar
  273. 273.
    J. R. Rice, “Chebyshev approximation by abx + c,” J. Soc Ind. Appl. Math., 8(4):691–702 (1960).MathSciNetGoogle Scholar
  274. 274.
    J. R. Rice, “Criteria for the existence and equioscillation of best Tchebycheff approximations,” J. Res. Nat. Bur. Std., B64(2):91–93 (1960).MathSciNetGoogle Scholar
  275. 275.
    J. R. Rice, “Tchebycheff approximations by functions unisolvent of variable degree,” Trans. Am. Math. Soc., 99(2):298–302(1961).MathSciNetMATHGoogle Scholar
  276. 276.
    J. R. Rice, “Best approximations and interpolating functions,” Trans. Am. Matt. Soc., 101(3):477–498 (1961).MathSciNetMATHGoogle Scholar
  277. 277.
    J. R. Rice, “Tchebysheff approximations in a compact metric space,” Bull. Am. Math. Soc., 68(4):405–410 (1962).MathSciNetMATHGoogle Scholar
  278. 278.
    J. R. Rice, “Nonlinear approximation,” in: H. L. Garabedian (ed.), Approximation of Functions, Elsevier Publishing Co., Amsterdam (1965), pp. 111–133.Google Scholar
  279. 279.
    J. R. Rice, The Approximation of Functions, Vol. 1, Linear Theory, Addison-Wesley, Reading, Mass., (1964), pp. X-200.MATHGoogle Scholar
  280. 280.
    J. R. Rice, “Tchebycheff approximation in several variables,” Trans. Am. Math. Soc., 109(3):444–466 (1963).MathSciNetMATHGoogle Scholar
  281. 281.
    J. R. Rice, “Approximation with convex constraints,” J. Soc. Ind. Appl. Math., 11:15–32(1963).MathSciNetMATHGoogle Scholar
  282. 282.
    J. R. Rice, “On the existence and characterization of best nonlinear Tchebycheff approximations,” Trans. Am. Math. Soc., 110(1):88–97 (1964).MathSciNetMATHGoogle Scholar
  283. 283.
    J. E. Rice, “On nonlinear L1 approximation,” Arch. Rational Mech. and Analysis, 17(1):61–65 (1964).MathSciNetMATHGoogle Scholar
  284. 284.
    T.J. Rivlin and H. S. Shapiro, “Some uniqueness problems in approximation theory,” Comm. Pure and Appl. Math., 13(1):35–47 (1960).MathSciNetMATHGoogle Scholar
  285. 285.
    T.J. Rivlin and H. S. Shapiro, “A unified approach to certain problems of approximation and minimization,” J. Soc Ind. Appl. Math., 9(4):670–699 (1961).MathSciNetMATHGoogle Scholar
  286. 286.
    M. Rosenblum, “Some Hilbert-space extremal problems,” Proc Am. Math. Soc., 164:687–691 (1965).MathSciNetGoogle Scholar
  287. 287.
    H.L. Royden, “On a paper of Rogosinski,” J.London Math. Soc., 35(2):225–228 (1960).MathSciNetMATHGoogle Scholar
  288. 288.
    W. Rudin and K. T. Smith, “Linearity of best approximation: a characterization of ellipsoids,” Proc. Koninkl. Ned. Akad. Wetenschap., A64(1):97–103 (1961);MathSciNetGoogle Scholar
  289. 288a.
    W. Rudin and K. T. Smith, “Linearity of best approximation: a characterization of ellipsoids,” Indagateones Math., 23(1):97–103 (1961).MathSciNetGoogle Scholar
  290. 289.
    B.R. Salinas, “Approximacion uniforme de una funcion continua por un conjunto convexo de funciones continuas,” Collect. Math., 11(3):175–203 (1959).MathSciNetMATHGoogle Scholar
  291. 290.
    H. S. Shapiro, “Some negative theorems of approximation theory,” Mich. Math. J., 11(3):211–213(1964).MATHGoogle Scholar
  292. 291.
    I.J. Schoenberg, “On the question of unicity in the theory of best approximation,” Ann. N. Y. Acad. Sci., 86(3):682–692 (1960).MathSciNetMATHGoogle Scholar
  293. 292.
    I. J. Schoenberg and C.T. Jang, “On the unicity of solutions of problems of best approximation,” Ann. Mat. Pura ed Appl., Vol. 54, 1–12 (1961).MATHGoogle Scholar
  294. 293.
    B. Sendov, “Approximation bezüglich einer Hausdorffschen metrik mittels algebraischer Polynome,” Wiss. Z. Techn. Univ. Dresden, 12(1):121–122 (1963).MathSciNetMATHGoogle Scholar
  295. 294.
    E. Sendov and B. Penkov, “On widths of the space of continuous functions,” Dokl. Bolgar. Akad. Nauk, 17(8):669–691 (1964).Google Scholar
  296. 295.
    K. Sieklucki, “Topological properties of sets admitting the Tschebycheff systems,” Bull. Acad. Polon. Sci., Sér. Sci. Math. Astron. et Phys., 6(10):603–506 (1958).MathSciNetMATHGoogle Scholar
  297. 296.
    I. Singer, “Caractérisation des éléments de meilleure approximation dans un espace de Banach quelconque,” Acta. Scient. Math., 17(3–4):181–189 (1956).MATHGoogle Scholar
  298. 297.
    I. Singer, “Sur la meilleure approximation des fonctions abstraites continues a valeurs dans un espace de Banach,” Rev. Math. Pures et Appl. (RPR), Vol. 2, 245–262 (1957).Google Scholar
  299. 298.
    I. Singer, “Aspura unicitâtii elementului de cea mai buna approximate in spatii Banach oarecare,” Studii Si Cercetari Mat. Acad. RPR, 8(1–2):235–244 (1957).MATHGoogle Scholar
  300. 299.
    I. Singer, “Asupra L-problemei teoriei momentelor in spatii Banach,” Bull, Çtiint. Acad. RPR, Sec. Mat. Si Fiz., 9(1):19–28 (1957).MATHGoogle Scholar
  301. 300.
    I. Singer, “La meilleure approximation interpolative dans les espaces de Banach,” Rev. Math. Pures et Appl. (RPR), 4(1):95–113 (1959).MATHGoogle Scholar
  302. 301.
    I. Singer, “Remarque sur un theorem dfapproximation de H. Yamabe,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. e Natur, 26(1):33–34 (1959).MATHGoogle Scholar
  303. 302.
    I. Singer, “Sur un théorème de Ch. J. de la Vallée-Poussin,” Rev. Math. Pures et Appl. (RPR), 4(2):317–324 (1959).MATHGoogle Scholar
  304. 303.
    I. Singer, “On best approximation of continuous functions,” Math. Ann., 140(2):165–168(1960).MathSciNetMATHGoogle Scholar
  305. 304.
    I. Singer, “On a theorem of V. Ptak concerning best approximation of continuous functions in the metric \(\int\limits_a^b {\left| {x\left( t \right)} \right|} dt \),” Ctiekhosl. Matem. Zh., 10(3):425–431 (1960).Google Scholar
  306. 305.
    I. Singer, “On the set of the best approximations of an element in a normed linear space,” Rev. Math. Pures et Appl. (RPR), 5(2):388–402 (1960).Google Scholar
  307. 306.
    I. Singer, “Some remarks on best approximation in normed linear spaces. I,” Rev. Math. Pures et Appl. (RPR), 6(2):357–362 (1961).MATHGoogle Scholar
  308. 307.
    I. Singer, “On best approximation of continuous functions. II,” Rev. Math. Pures et Appl. (RPR), 6(3):507–511 (1961).MATHGoogle Scholar
  309. 308.
    I. Singer, “Choquet spaces and best approximation,” Math. Ann., 148(4):330–340 (1962).MathSciNetMATHGoogle Scholar
  310. 309.
    I. Singer, “Some remarks on approximative compactness,” Rev. Roumaine Math. Pures et Appl., 9(2):166–177 (1964).Google Scholar
  311. 310.
    I. Singer, “On the extension of continuous linear functional and best approximation in normed linear spaces,” Math.Ann., 159(5):344–355 (1965).MathSciNetMATHGoogle Scholar
  312. 311.
    I. Singer, “Some remarks on best approximation in normed linear spaces. II,” Rev. Roumaine Math. Pures et Appl., 11(7):799–807 (1966).MATHGoogle Scholar
  313. 312.
    I. Singer, “Extremal points, Choquet boundary, and best approximation,” Rev. Roumaine Math. Pures et Appl., 11(10): 1173–1185 (1966).MATHGoogle Scholar
  314. 313.
    I. Singer, Cea Mai Bună Approximare in Spaii Vectoriale Normate Prin Elemente din Subspaţii Vectoriale, Acad. R.S.R., Bucharest (1967), 386 pp.Google Scholar
  315. 314.
    W. J. Stiles, “Closest-point maps and their products,” Nieuw. Arch. Wiskunde, 13(1):19–29(1965).MathSciNetMATHGoogle Scholar
  316. 315.
    W. J. Stiles, “A solution to Hirschfeld’s problem,” Nieuw. Arch. Wiskunde, 13(2):116–119(1965).MathSciNetMATHGoogle Scholar
  317. 316.
    W. J. Stiles, “Closest-point maps and their products. II,” Nieuw. Arch. Wiskunde, 13(3):212–225 (1965).MathSciNetGoogle Scholar
  318. 317.
    A. Talbot, “On a class of Tshebysheffian approximation problems solvable algebraically,” Proc. Cambridge Phil. Soc., 58(2):244–267 (1962).MathSciNetMATHGoogle Scholar
  319. 318.
    J. L. Walsh, “The existence of rational functions of best approximation,” Trans. Am. Math. Soc., 33(3): 668–689 (1931).Google Scholar
  320. 319.
    J. L. Walsh, G. H. Ahlberg, and E. N. Nilson, “Best approximation properties of the spline fit,” J. Math, and Mech., 11(2):225–234 (1962).MathSciNetMATHGoogle Scholar
  321. 320.
    J. L. Walsh and T. S. Motzkin, “Polynomials of best approximation on a real finite point set,” Proc. Nat» Acad. Sci. USA, 43(9):845–846 (1957).MathSciNetMATHGoogle Scholar
  322. 321.
    J. L. Walsh and T. S. Motzkin, “Polynomials of best approximation on an interval,” Proc. Nat. Acad. Sci. USA, 45(10):1523–1528 (1959).MathSciNetMATHGoogle Scholar
  323. 322.
    J. L. Walsh and T. S. Motzkin, “Polynomials of best approximation on an interval. II,” Proc. Nat. Acad. Sci. USA, 48(9):1533–1537 (1962).MathSciNetMATHGoogle Scholar
  324. 323.
    H. Werner, “On the rational Tschebyscheff operator,” Math. Z., 86(4):317–326 (1964).MathSciNetMATHGoogle Scholar
  325. 324.
    H. Werner, “On the local behavior of the rational Tschebyscheff operator,” Bull. Am. Math. Soc., 70(4):554–555 (1964).MATHGoogle Scholar
  326. 325.
    W. Wetterling, “Tschebyscheff-Approximation mit nichtlinear auftretenden Parametern,” Z. Angew. Math, und Mech., Vol. 44, Sondern. (1964), pp. 85–86.MathSciNetGoogle Scholar
  327. 326.
    A. Wouk, “Approximation and allocation,” J. Math. Analysis and Appl., 8(1):135–143(1964).MathSciNetMATHGoogle Scholar
  328. 327.
    D.E. Wulbert, Continuity of Metric Projections. Approximation Theory in a Normed Linear Lattice, Doctoral Dissertation, University of Texas (1966), 111 pp.;Google Scholar
  329. 327a.
    D.E. Wulbert, Continuity of Metric Projections. Approximation Theory in a Normed Linear Lattice, Dissertation Abstr., B27(8):2800 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • A. L. Garkavi

There are no affiliations available

Personalised recommendations