Advertisement

Asymptotic Methods in the Theory of Ordinary Differential Equations

  • V. F. Butuzov
  • A. B. Vasil’eva
  • M. V. Fedoryuk
Part of the Progress in Mathematics book series (PM, volume 8)

Abstract

The main aim of investigations undertaken during the early stages of research into differential equations was the derivation of exact solutions. It was subsequently found, however, that the effective representation of the exact solution in terms of elementary functions is possible only for a limited number of special classes of differential equations. Therefore, the question of methods for the construction of approximate solutions of differential equations was recognized to be the main area of research. Work in this area proceeded along two directions: a) the development of numerical methods of solution and b) the development of the so-called asymptotic methods of solution. The aim of this review is to describe asymptotic methods at their present level of development.

Keywords

Periodic Solution Cauchy Problem Small Parameter Asymptotic Solution Asymptotic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Z. S. Agranovich and V. A. Marchenko, The Inverse Problem in the Theory of Scattering, Khar’kov Univ., Khar’kov (1960), 268 pp.Google Scholar
  2. 2.
    L. D. Akulenko and V.M. Volosov, “The problem of stationary rotations in an autonomous system,” Vestn. Mosk. Univ. Matem., Mekhan., No. 6, 34–39 (1966).MathSciNetGoogle Scholar
  3. 3.
    L. D. Akulenko and V. M. Volosov, “Resonance in rotational systems,” Vestn. Mosk. Univ. Matem., Mekhan., No. 1, 12–16 (1967).MathSciNetGoogle Scholar
  4. 4.
    L. D. Akulenko and V. M. Volosov, “High-order resonance rotations,” Vestn. Mosk. Univ. Matem., Mekhan., No. 2, 10–14 (1967).MathSciNetGoogle Scholar
  5. 5.
    V. M. Alekseev, “On a problem with a small paramter,” Vestn. Mosk.Univ. Matem., Mekhan., No. 4, 17–27 (1962).Google Scholar
  6. 6.
    A. G. Alenitsyn, “Rayleigh waves in an inhomogeneous elastic layer,” Prikl. Matem, i Mekhan., 28(5):880–888 (1964).MathSciNetGoogle Scholar
  7. 7.
    D. V. Anosov, “Limiting cycles of systems of differential equations vith a small parameter attached to the leading derivatives,” Matem. Sborrik, 50(3):299–334 (1960).MathSciNetGoogle Scholar
  8. 8.
    D. V. Anosov, “Averaging for systems of ordinary differential equations-with rapidly oscillating solutions,” Izv. Akad. Nauk SSSR, Ser. Matem., 24(5):721–742 (1960).MathSciNetMATHGoogle Scholar
  9. 9.
    G. A. Antosevich, “Continuous dependence on a parameter and the method of averaging,” International Union on Theoret. and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR, Kiev (1961).Google Scholar
  10. 10.
    V. I. Arnol’d, “The conditions for applicability and the error estimates for the averaging method in the case of systems that pass through a resonance in the course of revolution,” Dokl. Akad. Nauk SSSR, 161(1):9–12 (1965).MathSciNetGoogle Scholar
  11. 11.
    N. Kh. Bagirova, “The dependence of the solutions of classical variational problems on a small parameter,” Dokl. Akad. Nauk Azerbaidzhaisk. SSR, 21(3):9–14(1965).MathSciNetMATHGoogle Scholar
  12. 12.
    N. Kh. Bagirova, “The dependence of the solution of variational problems on a small parameter,”Vestn. Mosk. Univ. Matem., Mekhan., No.1, 33–42 (1966).Google Scholar
  13. 13.
    N. Kh. Bagirova, “The dependence of the solution of the isoperimetric variational problem on a small parameter,” Uch. Zap. Azerbaidzhansk. Univ., Ser. Fiz.-Matem. Nauk, No. 1, 19–30 (1965).MathSciNetGoogle Scholar
  14. 14.
    Yu. N. Bakaev and P. I. Kuznetsov, “On the calculation of start-up transients in electric drives with a constant-current motor,” Élektrichestvo, No. 3, 47–50 (1959).Google Scholar
  15. 15.
    M. A. Barnovska, “The asymptotic representation of the spectral matrix of a fourth-order differential operator,” Dokl. Akad. Nauk SSSR, 162(6):1223–1225 (1965).MathSciNetGoogle Scholar
  16. 16.
    M. A. Barnovska, “The asymptotic representation of the spectral matrix of a fourth-order differential operator,” Mat.-Fyz. Casop., 16(2):105–127 (1966).MathSciNetMATHGoogle Scholar
  17. 17.
    V.N. Belobrov, “The behavior of the solutions of one class of homogeneous linear integro-differential equations with a small parameter attached to the leading derivatives,” in: Proceedings of the Twelfth Scientific Conference of Professional Teachers on the Staff of the Phys.-Math. Faculty of Kirgiz Univ., Mathematics Section, Frunze (1964), pp. 32–38.Google Scholar
  18. 18.
    Yu. S. Bogdanov, “Asymptotic properties of the solutions of linear differential systems,” in: Transactions of the Fourth All-Union Mathematics Congress, 1961, Vol. 2, “Nauka,” Leningrad (1964), pp. 424–432.Google Scholar
  19. 19.
    N.N. Bogolyubov, Statistical Methods in Mathematical Physics, Izd. Akad. Nauk Ukrainsk. SSR (1945).Google Scholar
  20. 20.
    N. N. Bogolyubov and D. N. Zubarev, “The asymptotic-approximation method for systems with rapidly varying phase and its application to the calculation of the motion of charged particles in a magnetic field,” Ukrainsk. Matem. Zh., 7(1):5–17 (1955).MathSciNetMATHGoogle Scholar
  21. 21.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlineai Oscillations, Fizmatgiz (1963).Google Scholar
  22. 22.
    N.N. Bogolyubov and Yu. A. Mitropol’skii, “The method of integral manifolds in nonlinear mechanics,” International Union on Theoret. and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR, Kiev (1961), 126 pp.Google Scholar
  23. 23.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, “Analytic methods in the theory of nonlinear oscillations,” Transactions of the All-Union Congress on Theoretical and Applied Mechanics, 1960, Izd. Akad. Nauk SSSR, Moscow (1962), pp. 25–35.Google Scholar
  24. 24.
    S. Yu. Borisova, “The asymptotic representation of solutions of the Cauchy problem for integro-differential equations with a small parameter attached to the leading derivatives in the case of a nonregular kernel,” Ukrainsk. Matem. Zh., 17(2):19–28 (1965).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Yu. G. Borisovich, “Periodic solutions of operator-differential equations with a small parameter attached to the derivative,” Dokl. Akad. Nauk SSSR, 148(2):255–258(1963).MathSciNetGoogle Scholar
  26. 26.
    L. M. Brekhovskii, Waves in a Stratified Medium, Izd. Akad. Nauk SSSR (1957).Google Scholar
  27. 27.
    N. I. Brish, “Bouadary problems for the equation εy″ = f(x, y, y’) for small ε,” Dokl. Akad. Nauk SSSR, 95(3):429–432 (1954).Google Scholar
  28. 28.
    V. S. Buslaev and L. D. Faddeev, “Trace formulas for the singular Sturm-Liouville differential operator,” Dokl. Akad. Nauk SSR, 132(1):13–16 (1960).MathSciNetGoogle Scholar
  29. 29.
    V. F. Butuzov, “The asymptotic behavior of the solution of integro-differential equations with a small parameter attached to the derivative,” Differents. Uravneniya, 2(3):391–406 (1966).MathSciNetGoogle Scholar
  30. 30.
    Ya. V. Bykov, “Bounded solutions of one class of integro-differential equations,” in: Research into Integro-differential Equations in Kiriz No. 2, Izd. Akad. Nauk Kirgizsk SSR, Frunze (1962), pp. 79–89.Google Scholar
  31. 31.
    Ya. V. Bykov and M. Imanaliev, “Periodic solutions of integro-differential equations,” in: Research into Integro-differential Equations in Kirgiz, No. 1. Akad. Nauk Kirgizsk. SSR, Runze (1961). pp. 141–158.Google Scholar
  32. 32.
    Ya. V. Bykov and M. Imanaliev, “Periodic, almost periodic, and bounded solutions of one class of integro-differential equations containing a small parameter,” in: Research in Integro-differential Equations in Kirgiz, No. 2, Akad. Nauk Kirgizsk. SSR, Frunze (1962), pp. 3–20.Google Scholar
  33. 33.
    B. F. Bylov, R. É. Vinograd, D. M. Grobman, and V. V. Nemytskii, The Theory of the Lyapunov Criterion and Its Application to Stability Problems, “Nauka,” Moscow (1966), 576 pp.Google Scholar
  34. 34.
    W. Wasow, “Singular periodic perturbations of ordinary differential equations,” International Union on Theoret. and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR, Kiev (1961), 19 pp.Google Scholar
  35. 35.
    A.B. Vasil’eva, “On the differentiation of solutions of differential equations containing a small parameter,” Dokl. Akad. Nauk SSSR, 61(4):597–599 (1948).MathSciNetMATHGoogle Scholar
  36. 36.
    A. B. Vasil’eva, “Differential equations containing a small parameter,” Matem. Sbornik, Vol. 31(73), No. 3, 587–644 (1952).MathSciNetGoogle Scholar
  37. 37.
    A. B. Vasil’eva, “Asymptotic formulas for the solution of systems of ordinary differential equations containing parameters of various orders of smallness,” Dokl.Akad. Nauk SSSR, 128(6):1110–1113 (1959).MathSciNetMATHGoogle Scholar
  38. 38.
    A. B. Vasil’eva, “Uniform approximations to the solution of a system of differential equations containing a small parameter and their application to boundary value problems,” Dokl. Akad. Nauk SSSR, 124(3):509–512 (1959).MathSciNetMATHGoogle Scholar
  39. 39.
    A. B. Vasil’eva, “On the repeated differential with respect to the parameter of the solutions of systems of ordinary differential equations containing a small parameter,” Matem. Sbornik, 48(3):311–334 (1959).MathSciNetGoogle Scholar
  40. 40.
    A. B. Vasil’eva, “The construction of a uniform approximation for the solution of a system of differential equations containing a small parameter,” Matem. Sbornik, 50(1):43–58 (1960).MathSciNetGoogle Scholar
  41. 41.
    A.B. Vasil’eva, “The asymptotic behavior of solutions of some boundary value problems for equations containing a small parameter,” Dokl. Akad. Nauk SSSR, 135(6):1303–1306 (1960).Google Scholar
  42. 42.
    A. B. Vasil’eva, “Asymptotic formulas for the solution of ordinary differential equations containing a small parameter over a semi-infinite interval,” Dokl. Akad. Nauk SSSR, 142(4):769–772 (1962).MathSciNetGoogle Scholar
  43. 43.
    A. B. Vasil’eva, “Equation of neutral type with a small retardation,” Dokl. Akad. Nauk SSSR, 145(3):495–497 (1962).MathSciNetGoogle Scholar
  44. 44.
    A. B. Vasil’eva, “The asymptotic behavior of the solutions of differential-difference equations in the case of a small deviation of the argument,” Zh.Vychisl. Matem, i Matem.-Fiz., 2(5):768–786(1962).MathSciNetGoogle Scholar
  45. 45.
    A. B. Vasil’eva, “The asymptotic behavior of the solutions of some problems for nonlinear ordinary differential equations with a small parameter attached to the highest derivative,” Usp. Matem. Nauk, 18(3):15–86 (1963).MathSciNetGoogle Scholar
  46. 46.
    A.B. Vasil’eva, “Asymptotic methods in the theory of ordinary differential equations containing a small parameter attached to the highest derivatives,” Zh. Vychisl. Matem, i Matem. Fiz., 3(4):611–642 (1963).MathSciNetGoogle Scholar
  47. 47.
    A.B. Vasil’eva, “Integral perturbations in differential equations with rapidly oscillating solutions,” Differents. Uravneniya, 1(6):717–730 (1965).MathSciNetMATHGoogle Scholar
  48. 48.
    A. B. Vasil’eva, “On the problem of the asymptotic behavior of the solutions of equations of neutral type with a small retardation,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 4, Patrice Lumumba University (1967), pp. 154–163.Google Scholar
  49. 49.
    A. B. Vasil’eva, “On the correspondence between the properties of the solutions of linear difference equations and systems of ordinary differential equations,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 5, Patrice Lumumba University (1967), pp. 21–44.Google Scholar
  50. 50.
    A. B. Vasil’eva and N. Kh. Bagirova, “The asymptotic behavior of the solution of differential equations containing a small parameter attached to the highest derivatives determined by various supplementary conditions,” Uchenye Zapiski Azerbaidzhan, Univ. Ser. Fiz.-Matem, i Khim. Nauk, No. 4, 3–17 (1962).MathSciNetGoogle Scholar
  51. 51.
    A. B. Vasil’eva and V. F. Butuzov, “The asymptotic behavior of the solution of integro -differential equations containing a small parameter attached to the derivative,” in: Numerical Methods for the Solution of Differential and Integro-differential Equations and Quadrature Formulas, “Nauka,” Moscow (1964), pp. 183–191.Google Scholar
  52. 52.
    A.B. Vasil’eva and V. F. Butuzov, “Some eigenvalue problems for inte gro -differential equations containing a small parameter attached to the highest derivative,” Differents. Uravneniya, No. 9, 1190–1203 (1965).MathSciNetGoogle Scholar
  53. 53.
    A. B. Vasil’eva and V. M. Volosov, “Concerning the work of A. N. Tikhonov and his students on ordinary differential equations containing a small parameter,” Usp. Matem. Nauk, 22(2):149–168 (1967).MathSciNetGoogle Scholar
  54. 54.
    A.B. Vasil’eva and A.B. Zirrin, “The asymptotic behavior of the solutions of some classes of differential equations containing a small parameter attached to the highest derivative,” Vestnik Mosk. Univ. Matem., Mekhan., No. 4, 21–29(1964).Google Scholar
  55. 55.
    A. B. Vasil’eva and M. Imanaliev, “The asymptotic behavior of the solution of the Cauchy problem for integr o-differential equations containing a small parameter attached to the derivative,” Sibirsk. Matem. Zh., 7(1):61–69 (1965).MathSciNetGoogle Scholar
  56. 56.
    A.B. Vasil’eva and A.M. Rodionov, “Application of the perturbation method to equations with a retarded argument in the case of small retardation,” in: Transactions of the Seminar or. the Theory of Differential Equations with a Deviating Argument, Vol. 1, Patrice Lumumba University (1962), pp. 20–27.Google Scholar
  57. 57.
    A.B. Vasil’eva and Yu. S. Sayasov, “The basis and conditions of applicability of the Semen ov —Bodenstein method of quasi-stationary concentrations,” Zh. Fiz. Khim., 29(5):802–810 (1955).Google Scholar
  58. 58.
    A.B. Vasil’eva and Yu. S. Sayasov, “The theory of the quenching of electron processes in jets of low-temperature plasma,” Zh. Prikl. Mekhan. i Tekhn. Fiz., No. 1, 26–34 (1968).Google Scholar
  59. 59.
    A.B. Vasireva and V. A. Tupchiev, “Asymptotic formulas for the solution of boundary value problems for second-order equations containing a small parameter attached to the highest derivative,” Dokl. Akad. Nauk SSSR, 135(5):1035–1037(1960).Google Scholar
  60. 60.
    A. B. Vasil’eva and V. A. Tupchiev, “Periodic solutions of systems of differential equations containing a small parameter attached to the derivatives,” Dokl. Akad. Nauk SSSR, 178(4) (1968).Google Scholar
  61. 61.
    N. P. Vekua, “Linear integro-differential equations containing a small parameter attached to the highest derivatives,” in: Topics in the Mechanics of Continuous Media, Akad. Nauk SSSR, Moscow (1961), pp. 92–100.Google Scholar
  62. 62.
    N. P. Vekua, “On a differential boundary value problem of linear coupling containing a small parameter,” Soobshch. Akad. Nauk Gruzinsk. SSR, 36(2):257–260(1964).MathSciNetMATHGoogle Scholar
  63. 63.
    N. P. Vekua, “One system of nonlinear differential equations containing a small parameter,” Trudy Tbilissk. Univ., Vol. 110, 25–32 (1965).MathSciNetGoogle Scholar
  64. 64.
    A. P. Velikii, “The asymptotic behavior of the generalized solutions of differential-difference equations containing a small parameter attached to the highest derivatives,” Dopovidi Akad. Nauk Ukrainsk. RSR, No. 11, 1419–1423 (1964).MathSciNetGoogle Scholar
  65. 65.
    M. I. Vishik and L. A. Lyusternik, “Regular degeneracy and the boundary layer for linear differential equations containing a small parameter,” Usp. Matem. Nauk, 12(5):3–122 (1957).MathSciNetMATHGoogle Scholar
  66. 66.
    M. I. Vishik and L. A. Lyusternik, “The asymptotic behavior of the solutions of boundary value problems for quasi-linear differential equations,” Dokl. Akad. Nauk SSSR, 121(5):778–781 (1958).MathSciNetMATHGoogle Scholar
  67. 67.
    M. I. Vishik and L. A. Lyusternik, “The solution of some perturbation problems in the case of matrices and self-adjoint and non-self-adjoint differential equations. 1,” Usp. Matem. Nauk, 15(3):3–80 (1930).MathSciNetGoogle Scholar
  68. 68.
    M. I. Vishik and L. A. Lyusternik, “On the initial jump for nonlinear differential equations containing a small parameter,” Dokl. Akad. Nauk SSSR, 132(6):1242–1245(1960).Google Scholar
  69. 69.
    I. M. Volk, “Periodic solutions of nonautonomous systems depending on a small parameter,” Prikl. Matem, i Mekhan., 10(5–6):559–574 (1946).MathSciNetMATHGoogle Scholar
  70. 70.
    I. M. Volk, “Some generalizations of the small-parameter method in the theory of periodic motions of nonautonomous systems,” Prikl. Matem, i Mekhan., 11(4):433–444 (1947).MathSciNetMATHGoogle Scholar
  71. 71.
    I. M. Volk, “Periodic solutions of autonomous systems,” Prikl. Matem, i Mekhan., 12(1):29–38 (1948).MathSciNetMATHGoogle Scholar
  72. 72.
    V. M. Volosov, “Nonlinear second-order differential equations containing a small parameter attached to the highest derivative,” Matem. Sbornik, Vol. 30(72), pp. 245–270 (1952).MathSciNetGoogle Scholar
  73. 73.
    V. M. Volosov, “On the theory of high-order nonlinear differential equations containing a small parameter attached to the highest derivative,” Matem. Sbornik, Vol. 31(73), No. 3, 645–674 (1952).MathSciNetGoogle Scholar
  74. 74.
    V. M. Volosov, “Averaging in systems of ordinary differential equations,” Usp. Matem. Nauk, 17(6):3–126 (1962).MathSciNetGoogle Scholar
  75. 75.
    V.M. Volosov, “Some forms of calculations in the theory of nonlinear oscillations concerned with averaging,” Zh. Vychisl. Matem, i Matem. Fiz., 3(1):3–53 (1963).MathSciNetMATHGoogle Scholar
  76. 76.
    V. M. Volosov, G. N. Medvedev and B. I. Morgunov, “The application of the averaging method to some systems of differential equations with a deviating argument,” Vestn. Mosk. Univ. Fiz., Astron., No. 6, 89–91 (1965).MathSciNetGoogle Scholar
  77. 77.
    V. M. Volosov, N.N. Moiseev, B.I. Morgunov, and F. L. Chernous’ko, “Asymptotic methods of nonlinear mechanics associated with averaging,” in: Transactions of the Second All-Union Congress on Theoretical and Applied Mechanics, 1964, Summary of Reports, Vol. 2, “Nauka,” Moscow (1965), pp. 35–50.Google Scholar
  78. 78.
    V. M. Volosov and B.I. Morgunov, “The asymptotic behavior of some rotational motions,” Dokl. Akad. Nauk SSSR, 151(6):1260–1263 (1963).MathSciNetGoogle Scholar
  79. 79.
    V.M. Volosov and B.I. Morgunov, “Stationary resonance states of some oscillatory systems,” Dokl. Akad. Nauk SSSR, 156(1):50–53 (1964).Google Scholar
  80. 80.
    V. M. Volosov and B.I. Morgunov, “The calculation of stationary resonant oscillatory states of some non-Hamiltonian systems,” Vestn. Mosk. Univ. Fiz., Astron., No. 4, 86–89 (1965).Google Scholar
  81. 81.
    V. M. Volosov and B. I. Morgunov, “The calculation of oscillatory states of non-Hamiltonian systems,” Dokl. Akad. Nauk SSSR, 161(5):1048–1050 (1965).MathSciNetGoogle Scholar
  82. 82.
    V. M. Volosov and B. I. Morgunov, “The asymptotic calculation of some rotational motions in the case of resonance,” Dokl. Akad. Nauk SSSR, 161(6):1303–1305(1965).MathSciNetGoogle Scholar
  83. 83.
    V.M. Volosov and B.I. Morgunov, “Some stability conditions associated with the study of resonances,” Dokl. Akad. Nauk SSSR, 170(2):239–241 (1966).MathSciNetGoogle Scholar
  84. 84.
    R. Gabasov, “One problem in the realization of programmed motion,” Trudy Ural’skogo Politekhn. Inst., No. 139, 86–95 (1964).MathSciNetGoogle Scholar
  85. 85.
    R. Gabasov, “The stability of differential-difference equations containing a small parameter attached to the derivatives,” Trudy Ural’skogo Politekhn. Inst., No. 139, 36–41 (1964).MathSciNetGoogle Scholar
  86. 86.
    M. G. Gasymov, “The analytic properties of the spectral function of the self-adjoint Sturm-Liouville operator,” Dokl. Akad. Nauk SSSR, 150(5):971–984 (1963).MathSciNetGoogle Scholar
  87. 87.
    M. G. Gasymov, “The sum of the differences of the eigenvalues of two self-adjoint operators,” Dokl. Akad. Nauk SSSR, 150(6):1202–1205 (1963).MathSciNetGoogle Scholar
  88. 88.
    M. G. Gasymov and B. M. Levitan, “The sum of the differences of the eigenvalues of two singular Sturm-Liouville operators, ” Dokl. Akad. Nauk SSSR, 151(5):1014–1017 (1963).MathSciNetGoogle Scholar
  89. 89.
    M. G. Gasymov and B. M. Levitan, “The determination of the Dirac system by means of the scattering phase,” Dokl. Akad. Nauk SSSR, 167(6): 1219–1222 (1966).MathSciNetGoogle Scholar
  90. 90.
    V. A. Ginzburg, The Propagation of Electromagnetic Waves in a Plasma, Fiz-matgiz, Moscow (1960).Google Scholar
  91. 91.
    V. B. Glasko, “Some eigenvalue problems involving a small parameter,” Dokl. Akad. Nauk SSSR, 108(5):167–769 (1956).MathSciNetGoogle Scholar
  92. 92.
    I. S. Gradshtein, “The behavior of the solutions of a system of linear differential equations with constant coefficients which degenerate in the limit,” Izv. Akad. Nauk SSSR, Ser. Matem., 13(3):253–280 (1949).Google Scholar
  93. 93.
    I. S. Gradshtein, “Differential equations containing a small parameter attached to the derivatives and the Lyapunov theory of stability,” Dokl. Akad. Nauk SSSR, 65(6):789–792 (1949).Google Scholar
  94. 94.
    I. S. Gradshtein, “Linear equations with variable coefficients and small parameters attached to the highest derivatives,” Matem. Sbornik, Vol. 27(69), No. 1, 47–68(1950).Google Scholar
  95. 95.
    I. S. Gradshtein, “Differential equations in which the coefficients of the derivatives contain various powers of a small parameter,” Dokl. Akad. Nauk SSSR, 82(1):5–8 (1952).Google Scholar
  96. 96.
    I. S. Gradshtein, “The application of A. M. Lyapunov’s theory of stability in the theory of differential equations containing a small parameter attachée to the derivatives,” Matem. Sbornik, Vol. 32(74), No. 2, 263–286 (1953).Google Scholar
  97. 97.
    I. S. Gradshtein, “The solution of differential equations containing a small parameter attached to the derivatives on the time half-axis,” Matem. Sbornik, Vol. 32(74), No. 3, 533–544 (1953).Google Scholar
  98. 98.
    E. A. Grebenikov, “Some aspects of the validity of averaging schemes in problems of celestial mechanics,” Byulleten Inst. Teoret. Astron. Akad. Nauk SSSR, 11(5):128 (1967).Google Scholar
  99. 99.
    L. A. Groza, “Asymptotic expansions of the solutions of second-order ordinary differential equations in Banach spaces,” Dokl. Akad. Nauk SSSR, 121(6):963–966 (1958).MathSciNetMATHGoogle Scholar
  100. 100.
    L. A. Groza, “The asymptotic behavior of the solutions of a linear second-order differential equation in Banach space when the small parameter attached to the first and second derivatives tends to zero,” Dokl. Akad. Nauk SSSR, No. 6, 1227–1230 (1962).MathSciNetGoogle Scholar
  101. 101.
    A. M. Guseinbekova, “The asymptotic expansions of eigenfunctions and eigenvalues in problems with a potential well,” Izv. Akad. Nauk Azerbaidzhansk. SSR, Ser. Fiz.-Matem. i Tekhn. Nauk, No. 6, 49–67 (1960);MathSciNetGoogle Scholar
  102. 101a.
    A. M. Guseinbekova, “The asymptotic expansions of the eigenfunctions and eigenvalues of a self-adjoint second-order differential operator with continuously large coefficients,” Izv. Akad. Nauk Azerbaidzhansk. SSR, Ser. Fiz.-Matem. i Tekhn. Nauk, No. 2, 13–25 (1961).MathSciNetGoogle Scholar
  103. 102.
    M. G. Dzhavadov, “The m-tuple completeness of one half of the eigenfunctions and associated functions of an ordinary differential equation of order 2m,” Dokl. Akad. Nauk SSSR, 160(4):754–757 (1965).MathSciNetGoogle Scholar
  104. 103.
    L. A. Dikii, “The trace formulas for Sturm-Liouville differential operators,” Usp. Matem. Nauk, 13(3):111–143 (1958).MathSciNetGoogle Scholar
  105. 104.
    L. A. Dikii, “Boundary conditions that depend on the eigenvalue,” Usp. Matem. Nauk, 15(1):195–198 (1960).MathSciNetGoogle Scholar
  106. 105.
    Yu. N. Dnestrovskii and D. P. Kostomarov, “The asymptotic behavior of eigenvalues in the case of non-self-adjoint boundary value problems,” Zh. Vychisl. Matem, i Matem. Fiz., 4(2):267–277 (1964).MathSciNetGoogle Scholar
  107. 106.
    A.A. Dorodnitsyn, “The asymptotic solution of the van der Pol equation,” Prikl. Matem, i Mekhan., Vol. 11, 313–328 (1947).Google Scholar
  108. 107.
    A.A. Dorodnitsyn, “Asymptotic distribution laws for the eigenvalues of some special forms of second-order differential equations,” Usp. Matem. Nauk, 7(6):3–96 (1952).Google Scholar
  109. 108.
    M. A. Evgrafov and M. V. Fedoryuk, “The asymptotic behavior of the solutions of the equation w″(z) - p(z, λ)w(z) = 0 as λ → ∞ in the complex plane z,” Usp. Matem. Nauk, 21(1):3–50 (1966).MATHGoogle Scholar
  110. 109.
    N. P. Erugin, Linear Systems of Ordinary Differential Equations with Periodic and Quasi-Periodic Coefficients, Akad. Nauk Belorussk. SSR, Minsk, 272 pp.Google Scholar
  111. 110.
    O. A. Zhautykov, “The principle of averaging in nonlinear mechanics as applied to systems of equations,” Ukrainsk. Matem. Zh., 17(1):39–46 (1965).CrossRefGoogle Scholar
  112. 111.
    V. F. Zhdanovich, “The asymptotic expansion of the eigenvalues of a boundary value problem involving a parameter,” Dokl. Akad. Nauk SSSR, 135(6):1318–1321(1960).Google Scholar
  113. 112.
    V. F. Zhdanovich, “Non-self-adjoint differential operators with irregular boundary conditions in vector-function space,” in: Functional Analysis and Its applications, Akad. Nauk Azerbaidzhansk. SSR, Baku (1961), pp. 58–64.Google Scholar
  114. 113.
    N. A. Zheleztsov, “On the theory of relaxation oscillations in second-order systems,” Radiofizika, No. 1, 67–78 (1958).Google Scholar
  115. 114.
    K. D. Zhulamanov and V. Kh. Kharasakhal, “The periodic solutions of differential equations containing a small parameter,” Izv. Akad. Nauk Kazakhsk. SSR, Ser. Fiz.-Matem., No. 3, 71–75 (1966).Google Scholar
  116. 115.
    K.V. Zadiraka, “Systems of nonlinear differential equations containing a small parameter attached to some derivatives,” Dokl. Akad. Nauk SSSR, 109(2):256–259(1956).MathSciNetMATHGoogle Scholar
  117. 116.
    K.V. Zadiraka, “The investigation of singularly perturbed systems in the neighborhood of a family of closed orbits,” Dokl. Akad. Nauk SSSR, 144(2):264–267(1962).MathSciNetGoogle Scholar
  118. 117.
    K. V. Zadiraka, “The investigation of a singularly perturbed autonomous system in the neighborhood of a torus,” Dokl. Akad. Nauk SSSR, 145(3):507–509(1962).MathSciNetGoogle Scholar
  119. 118.
    K.V. Zadiraka, “The behavior of singularly perturbed autonomous nonlinear differential systems in the neighborhood of a family of cylinders,” Ukrainsk. Matem. Zh., 14(3):235–249 (1962).MathSciNetMATHCrossRefGoogle Scholar
  120. 119.
    K.V. Zadiraka, “The nonlocal integral manifold of irregularly perturbed differential system,” Ukrainsk. Matem. Zh., 17(1):47–63 (1965).MathSciNetMATHCrossRefGoogle Scholar
  121. 120.
    G.M. Zaslavskii, S.S. Moiseev, and R. Z. Sagdeev, “The asymptotic method for the solution of a fourth-order differential equation containing two small parameters in the hydrodynamic theory of stability,” Dokl. Akad. Nauk SSSR, 153(6):1295–1298(1964).Google Scholar
  122. 121.
    G.M. Zaslavskii and A. M. Fridman, “The motion of a quasi-classical particle in a quasi-periodic potential,” Dokl. Akad. Nauk SSSR, 166(3):580–583 (1966).Google Scholar
  123. 122.
    N. A. Ivanova, “The asymptotic behavior of the Green functions of a linear ordinary differential equation with variable coefficients depending on a small parameter,” Dokl. Akad. Nauk SSSR, 140(1):29–32 (1961).MathSciNetGoogle Scholar
  124. 123.
    M. I. Imanaliev, “The periodic solutions of integro-differential equations containing a small parameter,” in: Research in Integro-differential Equations in Kirgiz, No. 1, Akad. Nauk Kirgizk. SSR, Frunze (1961), pp. 139–144.Google Scholar
  125. 124.
    M.I. Imanaliev, “The behavior of solutions of systems of integro-differential equations containing a small parameter attached to the derivatives,” in: Research in Integro-differential Equations in Kirgiz, No. 2, Akad. Nauk Kir-gizk. SSR, Frunze (1962), pp. 21–39.Google Scholar
  126. 125.
    M. I. Imanaliev, “Asymptotic estimates for the solutions of the Cauchy problem in the case of integro-differential equations containing a small parameter attached to the derivative,” Transactions of the Third (1964) Siberian Conference on Mathematics and Mechanics, Tomskii Univ., Tomsk (1964), pp. 106–108.Google Scholar
  127. 126.
    M. I. Imanaliev, “Asymptotic estimates for the bounded and almost periodic solutions of singularly perturbed systems of differential equations,” in: Transactions of the Third (1964) Siberian Conference on Mathematics and Mechanics, Tomskii Univ., Tomsk (1964), pp. 108–109.Google Scholar
  128. 127.
    M. I. Imanaliev, V.N. Belobrov, and O. Tukeshev, “The asymptotic behavior on the semi-axis of the solutions of nonlinear systems of integro-differential equations containing a small parameter attached to one of the derivatives,” in: Proceedings of the Thirteenth Scientific Conference of Professional Teachers on the Staff of the Phys.-Math. Faculty of Kirgiz Univ., Mathematics Section, Frunze (1965), pp. 38–40.Google Scholar
  129. 128.
    K. Kakishov and K. O. Éshenkulov, “Loaded nonlinear integro-differential equations with persistence,” in: Proceedings of the First Inter-University Science and Theory Conference of Science Teachers, Research Workers, and Students of the Universities of Kirgiz SSR Dedicated to the Fortieth Anniversary of the Formation of the Kirgiz SSR and of the Communist Party of the Kirgiz SSR, Mektep, Frunze (1966), p. 147.Google Scholar
  130. 129.
    K. K. Kapishev, “Quasi-periodic solutions of nonlinear systems of differential equations containing a small parameter,” Vestn. Akad. Nauk Kazakhsk. SSR, No. 6, 42–47 (1966).Google Scholar
  131. 130.
    K. K. Kapishev and V. Kh. Kharasakhal, “Almost periodic solutions of differential equations containing a small parameter attached to the derivatives,” in: Transactions of the First (1963) Kazakh Inter-University Scientific Conference on Mathematics and Mechanics Held at Alma-Ata, “Nauka” (1965), p. 277.Google Scholar
  132. 131.
    L. Caprioli, “A triode oscillator described by a tMrd-order differential equation,” International Union for Theoretical and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR (1961), 14 pp.Google Scholar
  133. 132.
    T. M. Karaseva, “The rate of growth and boundedness of solutions of differential equations with periodic coefficients,” Izv, Akad. Nauk SSSR, Ser. Matem., 29(1):41–70 (1965).MathSciNetMATHGoogle Scholar
  134. 133.
    K. A. Kasymov, “The asymptotic behavior of solutions of the Cauchy problem with large initial conditions for nonlinear ordinary differential equations containing a small parameter,” Usp. Matem. Nauk, 17(5):187–188 (1962).Google Scholar
  135. 134.
    K. A. Kasymov, “The asymptoticbehaviorof the solutions of the Cauchy problem with an initial discontinuity for systems of differential equations containing a small parameter attached to the derivatives,” in: The Equations of Mathematical Physics and Functional Analysis, “Nauka,” Alma-Ata (1966), pp. 16–24.Google Scholar
  136. 135.
    K.I. Kvantaliani, “Integro-differential equations of the Volterra type containing small parameters attached to the highest derivatives,” Soobshch. Akad. Nauk Gruzinsk. SSR, No. 3, 265–272 (1961).MathSciNetGoogle Scholar
  137. 136.
    K. I. Kvantaliani, “Boundary value problems for integr o-differential equations containing a small parameter,” Soobshch. Akad. Nauk Gruzinsk. SSR, 30(5): 545–552 (1963).MathSciNetMATHGoogle Scholar
  138. 137.
    K. I. Kvantaliani, “Some problems for singular integro-differential equations containing a small parameter” Soobshch. Akad. Nauk Gruzinsk. SSR, 39(3):519–525 (1965).MathSciNetMATHGoogle Scholar
  139. 138.
    P. Ya. Kirik, “The asymptotic solution of a system of linear differential equations,” in: Collected Scientific Transactions of the Krivorozhye Mining Institute, No. 1 (1961), pp. 400–406.Google Scholar
  140. 139.
    A.I. Klimushev, “The dependence of the solutions of systems of difference equations on a small parameter attached to the first difference,” Trudy Ural’skogo Polytekhn. Inst., No. 113, 45–55 (1961).Google Scholar
  141. 140.
    A. I. Klimushev, “The dependence of the solutions of a system of differential equations with lag on a small parameter attached to the derivatives,” Trudy Ural’skogo Politekhn. Inst., No. 139, 5–11 (1964).Google Scholar
  142. 141.
    A.I. Klimushev, “The stability of a system of difference equations containing small parameters attached to the first differences,” Trudy Ural’skogo Politekhn. Inst., No. 139, 42–49 (1964).Google Scholar
  143. 142.
    A.I. Klimushev and N.N. Krasovskii, “Uniform asymptotic stability of systems of differential equations containing a small parameter attached to the derivatives,” Prikl. Matem, i Mekhan., Vol. 25, 680–690 (1961).Google Scholar
  144. 143.
    P. I. Koval’. “The asymptotic behavior of the solutions of almost triangular systems of linear difference and differential equations,” Dokl. Akad. Nauk SSSR, 124(6):1203–1206 (1959).MathSciNetGoogle Scholar
  145. 144.
    E. A. Coddington and N. Levinson, The Theory of Ordinary Differential Equations [Russian translation], IL, Moscow (1956) [English edition: McGraw-Hill, New York].Google Scholar
  146. 145.
    P. V. Kokotovich and R. S. Rutman, “The sensitivity of automatic control systems,” Avtomatika i Telemekhanika, 26(4):730–745 (1965).Google Scholar
  147. 146.
    V. O. Kononenko, Oscillatory Systems with Bounded Perturbations, “Nauka,” Moscow (1964).Google Scholar
  148. 147.
    V. S. Korolyuk, “The asymptotic behavior of the solutions of difference equations containing a small parameter,” Ukrainsk. Matem. Zh., 12(3):342–346 (1960).MATHCrossRefGoogle Scholar
  149. 148.
    V. S. Korolyuk and É. R. Nitskaya, “Remarks on the algorithm for the construction of the boundary layer,” Usp. Matem. Nauk, 16(5):171–176 (1961).MATHGoogle Scholar
  150. 149.
    O. V. Kostin, “Asymptotic formulas for the solution of linear ordinary differential equations,” Dopovidi Akad. Nauk Ukrainsk. RSR, No. 10, 1293–1297 (1962).MathSciNetGoogle Scholar
  151. 150.
    D. P. Kostomarov, “Boundary value problems involving the determination of eigenvalues and eigenfunctions of ordinary differential equations containing a small parameter attached to the highest derivative,” Dokl. Akad. Nauk SSSR, 115(2):230–233(1957).MathSciNetMATHGoogle Scholar
  152. 151.
    A. G. Kostyuchenko, “The distribution of the eigenvalues of singular differential operators,” Dokl. Akad. Nauk SSSR, 168(1):21–24 (1966).MathSciNetGoogle Scholar
  153. 152.
    A. G. Kostyuchenko, “The asymptotic behavior of the spectral function of a singular differential operator of order 2n,” Dokl. Akad. Nauk SSSR, 168(2):276–279(1966).MathSciNetGoogle Scholar
  154. 153.
    A. O. Kravitskii, “Expansion in eigenfunctions of a non-self-adjoint boundary value problem,” Dokl. Akad. Nauk SSSR, 170(6):1255–1258 (1966).MathSciNetGoogle Scholar
  155. 154.
    N. M. Krylov and N.N. Bogolyubov, Introduction to Nonlinear Mechanics, Izd. Akad. Nauk Ukrainsk. SSR, Kiev (1937).Google Scholar
  156. 155.
    A. P. Kubanskaya, “An example of the application of Galerkin’s method to a problem involving a boundary layer,” Trudy Matem. Inst. Akad. Nauk SSSR, Vol. 84, 60–77 (1965).Google Scholar
  157. 156.
    V. F. Lazutkin, “Expansions in eigenfunctions of a non-self-adjoint operator associated with the Watson transformation,” Vestn. Leningr. Univ., No. 1, 38–50 (1965).Google Scholar
  158. 157.
    A. Yu. Levin, “The stability of the solutions of second-order equations,” Dokl. Akad. Nauk SSSR, 141(6): 1298–1301 (1961).MathSciNetGoogle Scholar
  159. 158.
    B. M. Levitan, “Some remarks coaceming spectra,” Appendix to: E. G. Titchmarsh, Eigenfunction Expansions [Russian translation], IL, Moscow (1960), pp. 229–236. [English edition: Oxford University Press, New York.]Google Scholar
  160. 159.
    B. M. Levitan, “The calculation of the regularized trace for the Sturm-Liou\ilie operator,” Usp. Matem. Nauk, 19(1):161–165 (1964).MathSciNetMATHGoogle Scholar
  161. 160.
    B. M. Levitan and I. S. Sargsyan, “Some aspects of the theory of the Sturm-Liouville equation,” Usp. Matem. Nauk 15(1):3–98 (1960).MATHGoogle Scholar
  162. 161.
    V. B. Lidskii, “Regularized sums of the roots of one class of entire functions,” Funktsional. Analiz i Ego Prilozhsn., 1(2):52–59 (1967).MathSciNetMATHGoogle Scholar
  163. 162.
    Lin Tsung-ch’ih, “Perturbations in the solutions of second-order differential equations arising from perturbations of the boundary,” Vestn. Mosk. Univ. Matem., Mekhan., No. 6, 17–23 (1964).Google Scholar
  164. 163.
    Lin Tsung-ch’ih, “The asymptotic behavior of the solution of the Cauchy problem in the case when the limiting equation has a singularity,” Dokl. Akad. Nauk SSSR, 157(36):522–525 (1964).MathSciNetGoogle Scholar
  165. 164.
    Lin Tsung-ch’ih, “The asymptotic behavior of the solutions of linear differential equations in the case of combined perturbations of the boundary and operator,” Usp. Matem. Nauk, 19(5):201–203 (1964).Google Scholar
  166. 165.
    C. C. Lin (Lin Chia-chiao), The Theory of Hydrodynamic Stability [Russian translation], IL, Moscow (1958).Google Scholar
  167. 166.
    S.A. Lomov, “The asymptotic behavior of the solutions of second-order ordinary differential equations containing a small parameter and degenerating on the boundary,” Trudy Mosk. Énerg. Inst., No. 42, 9–144 (1962).Google Scholar
  168. 167.
    S.A. Lomov, “A power boundary layer in problems involving a small parameter,” Dokl. Akad. Nauk SSSR, 148(3):516–519 (1963).MathSciNetGoogle Scholar
  169. 168.
    S.A. Lomov, “The generalization of the Fuchs theorem to nonanalytic cases,” Matem. Sbornik, 65(4):498–511 (1964).MathSciNetGoogle Scholar
  170. 169.
    S.A. Lomov, “A power boundary layer in problems with a singular perturbation,” Izv. Akad. Nauk SSSR, Ser. Matem., 30(3):525–572 (1966).MathSciNetMATHGoogle Scholar
  171. 170.
    M. I. Lomonosov, “On the equation \(\frac{d}{{dy}}[p(y)\frac{{du}}{{dy}}] + q(y)u = \lambda u\),” Zapiski Matem. Otdela Fiz.-Matem. Khar’kovsk. Univ. i Khar’kovsk. Matem. Obshchestva, Vol. 26, Ser. 4, 267–316 (1960).Google Scholar
  172. 171.
    O.B. Lykova, “The investigation of the solution of almost-integrable nonlinear systems with the help of the integral-manifold method,” in: Transactions of the 1961 International Symposium on Nonlinear Oscillations, Akad. Nauk Ukrainsk. SSR, Kiev (1963), pp. 315–323.Google Scholar
  173. 172.
    O.B. Lykova, “The investigation of the solutions of a system of n + m nonlinear differential equations in the neighborhood of the integral manifold,” Ukiainsk. Matem. Zh., 16(1):13–30 (1964).MathSciNetMATHGoogle Scholar
  174. 173.
    O.B. Lykova, “The behavior of the solutions of a system of n + m differential equations in the neighborhood of the equilibrium configuration,” Dopovidi Akad. Nauk Ukrainsk. RSR, No. 5, 569–573 (1964).Google Scholar
  175. 174.
    O. B. Lykova, “Quasi-periodic solutions of an almost-canonical system,” Ukiainsk. Matem. Zh., 16(6):752–768 (1964).MathSciNetMATHCrossRefGoogle Scholar
  176. 175.
    O.B. Lykova, “The generalization of a theorm of N. N. Bogolyubov to the case of Hilbert spaces,” Ukrainsk. Matem. Zh., 18(5):53–59 (1966).MathSciNetMATHGoogle Scholar
  177. 176.
    I. S. Lyubchenko, “The application of Newton’s method to the solution of some problems involving nonlinear differential equations containing a small parameter attached to the highest derivatives,” Usp. Matem. Nauk, 19(6): 222–224(1964).Google Scholar
  178. 177.
    I. S. Lyubchenko, “The sufficient conditions for the existence and uniqueness of tie solution of the boundary value problem in the case of a system of differential equations containing a small parameter attached to the highest derivatives,” Usp. Matem. Nauk, 20(3):247–250 (1965).Google Scholar
  179. 178.
    I. S. Lyubchenko, “The asymptotic method for the calculation of temperature fields in gas-turbine blades,” Izv. Vysshikh Uchebn. Zavedenii, Aviats. Tekhn., No. 2, 92–102 (1965).Google Scholar
  180. 179.
    I. S. Lyubchenko and V. A. Tupchiev, “The asymptotic solutions of problems concerning the determination of temperature fields in gas-turbine blades,” Vestn. Mosk. Univ. Matem., Mekhan., No. 1, 52–60 (1965).Google Scholar
  181. 180.
    G. S. Makaeva, “The asymptotic behavior of solutions of differential equations containing a small parameter, the ‘rapid-motion’ systems of which are Hamiltonian,” Izv. Akad. Nauk SSSR, Ser. Matera., 25(5):685–716 (1961).MathSciNetMATHGoogle Scholar
  182. 181.
    F. G. Maksudov, “The spectrum of singular non-self-adjoint differential operators cf order 2n,” Dokl. Akad. Nauk SSSR, 153(4):758–761 (1963).MathSciNetGoogle Scholar
  183. 182.
    V. P. Maslov, “The scattering problem in the quasi-classical approximation,” Doki, Akad. Nauk SSSR, 151(2):306–309 (1963).Google Scholar
  184. 183.
    V. P. Maslov, “Quasi-classical asymptotic behavior of the solution of the Dirac equation,” Usp. Matem. Nauk, 18(4):220–222 (1963).Google Scholar
  185. 184.
    V. P. Maslov, “The behavior at infinity of the eig&nfunctions of the Schroedinger operator,” Usp. Matem. Nauk, No. 1, 199–201 (1964).Google Scholar
  186. 185.
    V. P. Maslov, “The asymptotic behavior of the eigenvalues of the Schroedinger operator,” Usp. Matem. Nauk, 20(6):134–138 (1965).MATHGoogle Scholar
  187. 186.
    V. P. Maslov, Perturbation Theory and Asymptotic Methods, Mosk. Univ., Moscow (1965).Google Scholar
  188. 187.
    G. N. Medvedev, “Higher-order approximations in the averaging method applied to the calculation of some systems of differential equations containing a deviating argument,” Vestn. Mosk. Univ. Fiz., Astron., No. 4, 110–112 (1966).Google Scholar
  189. 188.
    G. N. Medvedev, “Reviev of reports presented at the International Symposium on Nonlinear Oscillations held in Kiev on September 12–18, 1961,” Usp. Matem. Nauk, 17(2):215–265 (1962).Google Scholar
  190. 189.
    V. M. Millionshchikov, “The theory of differential equations containing a small parameter attached to the derivatives in linear topological spaces,” Dokl. Akad. Nauk SSSR, 146(5):1021–1024 (1962).MathSciNetMATHGoogle Scholar
  191. 190.
    Yu. A. Mitropol’skii, Nonstationary Phenomena in Nonlinear Oscillatory Systems, Izd. Akad. Nauk Ukrainsk. SSR (1955).Google Scholar
  192. 191.
    Yu. A. Mitropol’skii, The Asymptotic Theory of Nonstationary Oscillations, “Nauka,” Moscow (1964).Google Scholar
  193. 192.
    Yu. A. Mitropol’skii, Lectures on the Averaging Method in Nonlinear Mechanics, Naukova Dumka, Kiev (1966).Google Scholar
  194. 193.
    Yu. A. Mitropol’skii and O. B. Lykova, “The integral manifold of a nonlinear system in Hubert Space,” Ukrainsk. Matem. Zh., 17(5):43–53 (1965).MathSciNetCrossRefGoogle Scholar
  195. 194.
    Yu. A. Mitropol’skii and A. M. Samoilenko, “An investigation of the structure of a trajectory on toroidal manifolds,” Dopovidi Akad. Nauk Ukrainsk. RSR, No. 8, 984–986 (1964).MathSciNetGoogle Scholar
  196. 195.
    Yu. A. Mitropol’skii and S. I. Fodchuk, “The asymptotic methods of nonlinear mechanics as applied to nonlinear differential equations with a retarded argument,” Ukrainsk. Matem. Zh., 18(3):65–84 (1966).MathSciNetCrossRefGoogle Scholar
  197. 196.
    E. F. Mishchenko, “The asymptotic calculation of the periodic solutions of systems of differential equations containing small parameters attached to the derivatives,” Izv. Akad. Nauk SSSR, Ser. Matem., 21(5):627–654 (1957).MATHGoogle Scholar
  198. 197.
    E. F. Mishchenko, “The asymptotic theory of relaxation oscillations described by second-order systems,” Matem. Sbornik, 44(4):457–480 (1958).Google Scholar
  199. 198.
    E. F. Mishchenko and L. S. Pontryagin, “Almost-disconnected periodic solutions of differential equations,” Dokl. Akad. Nauk SSSR, 102(5):889–891 (1955).MathSciNetMATHGoogle Scholar
  200. 199.
    E. F. Mishchenko and L. S. Pontryagin, “The derivation of some asymptotic bounds for the solutions of differential equations containing a small parameter attached to the derivatives,” Izv. Akad. Nauk SSSR, Ser. Matem., 23(5) (1959).Google Scholar
  201. 200.
    N. N. Moiseev, “The asymptotic behavior of rapie rotations,” Zh. Vychisl. Matem, i Matem. Fiz., 3(1):145–158 (1963).MathSciNetMATHGoogle Scholar
  202. 201.
    N. N. Moiseev, “Asymptotic representations of the solutions of linear differential equations in the case of multiple elementary divisors of the characteristic equation,” Dokl. Akad. Nauk SSSR, 170(4):780–782 (1966).MathSciNetGoogle Scholar
  203. 202.
    A.M. Molchanov, “Uniform asymptotic behavior of linear systems,” Dokl. Akad. Nauk SSSR, 173(3):519–522 (1967).MathSciNetGoogle Scholar
  204. 203.
    B. I. Morgunov, “Asymptotic analysis of some rotational motions,” Vestn. Mosk. Univ. Fiz., Astron., No. 4, 56–65 (1965).Google Scholar
  205. 204.
    B. I. Morgunov, “The calculation of the rotations of some non-Hamiltonian systems,” Vestn. Mosk. Univ. Fiz., Astron., No. 4, 83–86 (1965).Google Scholar
  206. 205.
    B. I. Morgunov, “Higher-order approximations in the calculation of the stationary resonance states of some nonlinear systems,” Vestn. Mosk. Univ. Fiz., Astron., No. 5, 38–44 (1965).MathSciNetGoogle Scholar
  207. 206.
    M. A. Naimark, Linear Differential Operators, GTTI, Moscow (1954).Google Scholar
  208. 207.
    O. A. Oleinik and A.I. Zhizhina, “The boundary value problem for the equation εy″ = F(x, y, y″) for small ε,” Matem. Sbornik, Vol. 31(73), No. 3, 707–717 (1952).Google Scholar
  209. 208.
    B. S. Pavlov, “The non-self-adjoint Schroedinger operator,” in: Topics in Mathematical Physics, Vol. 1: Spectral Theory and Wave Processes, M. Sh. Birman (ed.), Consultants Bureau, New York (1967).Google Scholar
  210. 209.
    B.N. Panaioti, “Nonlinear differential equations containing a small parameter in Banach space,” Trudy Inst. Matem, i Mekhan. Akad. Nauk Azerbaidzhansk. SSR, Vol. 2(10):39–48 (1963).MathSciNetGoogle Scholar
  211. 210.
    B.N. Panaioti, “Uniform approximation to the derivative of the solution of the Cauchy problem for a second-order equation in Banach space containing a small parameter,” Izv. Akad.Nauk Azerbaidzhansk. SSR, Ser. Fiz.-Tekhn. i Matem. Nauk, No. 3, 53–64(1964).MathSciNetGoogle Scholar
  212. 211.
    A. A. Plotnikov, “The limiting transition τ → 0 in the case of a system of equations of the neutral type with a small retardation τ,” in: Transactions of the Seminar on the Theory of Differential Equations with a Perturbed Argument, Vol. 5, Patrice Lumumba University (1967), pp. 45–58.Google Scholar
  213. 212.
    L. S. Pontryagin, “The asymptotic behavior of the solutions of systems of differential equations containing a small parameter attached to the highest derivatives,” Izv. Akad. NaukSSSR, Ser. Matem., 21(5):605–626 (1957).MathSciNetMATHGoogle Scholar
  214. 213.
    L. S. Pontryagin and L. V. Rodygin, “An approximate solution of a system of ordinary differential equations containing a small parameter attached to the derivatives,” Dokl. Akad. Nauk SSSR, 131(2):255–258 (1960).MathSciNetGoogle Scholar
  215. 214.
    L. S. Pontryagin and L. V. Rodygin, “The periodic solution of a system of ordinary differential equations containing a small parameter attached to the derivatives,” Dokl. Akad. Nauk SSSR, 132(3):537–540 (1960).MathSciNetGoogle Scholar
  216. 215.
    V. S. Pugachev, “The asymptotic representation of the integrals of systems of linear ordinary differential equations containing a parameter,” Matem. Sbornik, Vol. 15(57), No. 1, 13–46 (1944).Google Scholar
  217. 216.
    S.S. Pul’kin and N. Kh. Rozov, “The asymptotic theory of relaxation oscillations in systems with one degree of freedom. I. The calculation of phase trajectories,” Vestn. Mosk. Univ. Matem., Mekhan., No, 2, 70–82 (1964).MathSciNetGoogle Scholar
  218. 217.
    V. V. Pukhnachev, “On an equation containing two small parameters attached to the derivatives,” Zh.Vychisl. Matem, i Matem. Fiz., No. 1, 178–183 (1966).Google Scholar
  219. 218.
    Yu. L. Rabinovich and M. M. Khapaev, “Linear equations containing a small parameter attached to the highest derivative in the neighborhood of a regular singularity,” Dokl. Akad. Nauk SSSR, 129(2):268–271 (1959).MathSciNetMATHGoogle Scholar
  220. 219.
    B. S. Razumikhin, “The stability of systems containing a small factor,” Prikl. Matem, i Mekhan., 21(4):578–580 (1957).Google Scholar
  221. 220.
    B. S. Razumikhin, “The stability of the solutions of systems of differential equations containing a small parameter attached to the derivatives,” Sibirsk. Matem. Zh., 4(1):206–211 (1963).MATHGoogle Scholar
  222. 221.
    I. M. Rapoport, Some Asymptotic Methods in the Theory of Differential Equations, Izd. Akad. Nauk Ukrainsk. SSR, Kiev (1954), 290 pp.Google Scholar
  223. 222.
    A.M. Rodionov, “Expansion of solutions of differential equations with retardation in powers of the small retardation,” Prikl. Matem, i Mekhan., 26(5):947–949(1962).MathSciNetGoogle Scholar
  224. 223.
    A. M. Rodionov, “Periodic solutions of nonlinear differential equations with retardation,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 2, Patrice Lumumba University (1963), pp. 200–207.Google Scholar
  225. 224.
    A. M. Rodionov, “The application of the perturbation method to linear equations with a distributed retardation,” Zh. Vychisl. i Matem, i Matem. Fiz., 4(2):358–363 (1964).MathSciNetGoogle Scholar
  226. 225.
    L. V. Rodygin, “The existence of an invariant torus for systems of ordinary differential equations containing a small parameter,” Izv. Vysshikh Uchebn. Zavedenii, Radiofizika, 3(1): 116–129 (1960).Google Scholar
  227. 226.
    V.I. Rozhkov, “The asymptotic behavior of the solutions of equations of the neutral type with a small retardation,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 2, Patrice Lumumba University (1963), pp. 208–222.Google Scholar
  228. 227.
    V.I. Rozhkov, “The asymptotic behavior of the solutions of equations of neutral type with a small retardation,” in: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulas, “Nauka,” Moscow (1964), pp. 161–175.Google Scholar
  229. 228.
    V. I. Rozhkov, “Asymptotic formulas with respect to a small retardation for the solution of equations of neutral type containing two retardation parameters,” in: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulas, “Nauka,” Moscow (1964), pp. 176–182.Google Scholar
  230. 229.
    V.I. Rozhkov, “The boundary value problem for an equation of neutral type with a small retardation,” in: Transactions of the Seminar on the Theory of Differential Equations with a Perturbed Argument, Vol. 3, Moscow (1965), pp. 47–56.Google Scholar
  231. 230.
    V.I. Rozhkov, “The behavior of the solutions of a system of equations of neutral type when the retardation tends to zero,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 3, Moscow (1965), pp. 146–152.Google Scholar
  232. 231.
    V. I. Rozhkov, “Equations of neutral type with a small retardation on an infinite interval,” in: Transactions of the Seminar on the Theory of Differential Equations with a Perturbed Argument, Vol. 3, Moscow (1965), pp. 186–203.Google Scholar
  233. 232.
    V.I. Rozhkov, “Equations of neutral type with a variable small retardation,” Differents. Uravneniya, 2(3):407–416 (1966).Google Scholar
  234. 233.
    N. Kh. Rozov, “The asymptotic calculation of almost-disconnected periodic solutions of systems of second-order differential equations,” Dokl. Akad. Naik SSSR, 145(1):38–40 (1962).MathSciNetGoogle Scholar
  235. 234.
    N. Kh. Rozov, “The asymptotic theory of relaxation oscillations in systems with one degree of freedom. II. Calculation of the period of the limit cycle,” Vestn. Mosk. Univ. Matem., Mekhan., No. 3, 56–65 (1964).MathSciNetGoogle Scholar
  236. 235.
    V. P. Rubanik, “The basis of the application of the averaging method to systems of differential-difference equations,” in: Science Yearbook for 1952, Physicomathematical Faculty of Chernovtsy University, Chernovtsy (1963), pp. 533–535.Google Scholar
  237. 236.
    V. P. Rubanik, “Resonance phenomena in quasi-linear oscillatory systems with retarded arguments,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 5, 75–86(1962).MathSciNetGoogle Scholar
  238. 237.
    V. P. Rubanik, “The interaction between two nonlinear systems in the presence of small retarded coupling forces,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 2, Patrice Lumumba University (1963), pp. 183–199.Google Scholar
  239. 238.
    Yu. A. Ryabov, “The application of the small-parameter method for the construction of solutions of differential equations with a retarded argument,” Dokl. Akad. Nauk SSSR, 133(2):288–291 (1960).Google Scholar
  240. 239.
    Yu..A. Ryabov, “Some asymptotic properties of linear systems with a small retardation in time,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 3 (1965), pp. 153–164.Google Scholar
  241. 240.
    Yu.A. Ryabov, “Approximate solutions of nonlinear differential equations with a retarded argument,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 3, Moscow (1965), pp.165–185.Google Scholar
  242. 241.
    Yu. A. Ryabov and V. A. Sadovnichii, “On the trace of the difference of two high-order ordinary differential operators,” Differents. Uravneniya, 2(12):1611–1624(1966).Google Scholar
  243. 242.
    I. S. Sargsyan, “The asymptotic behavior of the spectral matrix of the one-dimensional Dirac system,” Dokl. Akad. Nauk SSSR, 166(5): 1058–1061 (1966).MathSciNetGoogle Scholar
  244. 243.
    L. A. Sakhnovich, “The spectrum of the anharmonic oscillator,” Izv. Akad. Nauk SSSR, Ser. Matem., 28(6):1345–1362 (1964).MATHGoogle Scholar
  245. 244.
    L. A. Sakhnovich, “The analytic properties of the discrete spectrum of the Schroedinger equation,” Matem. Sbornik, No. 2, 185–204 (1964).Google Scholar
  246. 245.
    L. A. Sakhnovich, “The spectrum of the radial Schroedinger equation in the neighborhood of the origin,” Matem. Sbornik, 67(2):221–243 (1965).Google Scholar
  247. 246.
    N. S. Satskaya, “The solution of an implicit first-order differential equation contiining a small parameter,” Matem. Sbornik, 57(4):517–526 (1962).Google Scholar
  248. 247.
    N. S. Satskaya, “On one differential equation containing a small parameter,” Matem. Sbornik, 60(4):499–505 (1963).Google Scholar
  249. 248.
    M. I. Serov, “Some properties of-the spectrum of a non-self-adjoint second-ordei differential operator,” Dokl. Akad. Nauk SSSR, 131(1):27–29 (1960).Google Scholar
  250. 249.
    Y. Sibuya, “The asymptotic representation of the solutions of ordinary differential equations and its applications,” Sugaku, 13(4):236–248 (1962).MathSciNetGoogle Scholar
  251. 250.
    B. Ya. Skachek, “The asymptotic behavior of the negative part of the spectrum of one-dimensional differential operators,” in: Approximate Methods for the Solution of Differential Equations, Akad. M auk Ukrainsk. SSR, Kiev (1963), pp. 96–109.Google Scholar
  252. 251.
    V. P. Skripaik, “Degenerate systems and a small parameter attached to the highest derivative,” Matem. Sbornik, 65(3):338–356 (1964).Google Scholar
  253. 252.
    P. E. Sobolevskii, “Second-order equations in Banach space containing a small parameter attached to the highest derivative,” Usp. Matem. Nauk, 19(6):217–219(1964).MathSciNetGoogle Scholar
  254. 253.
    Z.T. Sultanova, “Points of degeneracy in linear systems,” Dokl. Akad. Nauk Azerbaidzhansk. SSR, 22(11):3–7 (1966).MathSciNetMATHGoogle Scholar
  255. 254.
    Ya. D. Tamarkin, Some General Problems in the Theory of Ordinary Differential Equations, Petrograd (1917).Google Scholar
  256. 255.
    A.N. Tikhonov, “The dependence of the solutions of differential equations on a small parameter,” Matem. Sbornik, Vol. 22(64), No. 2, 193–204 (1948).Google Scholar
  257. 256.
    A.N. Tikhonov, “Systems of differential equations containing a parameter,” Matern. Sbornik, Vol. 27(69), pp. 147–156 (1950).Google Scholar
  258. 257.
    A.N. Tikhonov, “Systems of differential equations containing small parameters attached to the derivatives,” Matem. Sbornik, Vol. 31(73), No. 3, 575–586(1952).Google Scholar
  259. 258.
    A.N. Tikhonov, A. B. Vasil’eva, and V. M. Volosov, “Differential equations containing a small parameter,” in: Transactions of the 1961 International Conference on Nonlinear Oscillations, Akad. Nauk Ukrainsk. SSR, Kiev (1963), pp. 456–472.Google Scholar
  260. 259.
    V. A. Tkachenko, “The spectral analysis of the one-dimensional Schroedinger operator with a complex potential,” Dokl. Akad. Nauk SSSR, 155(2):289–291 (1964).MathSciNetGoogle Scholar
  261. 260.
    V. A. Tkachenko, “Conditions for the discreteness of the spectrum of one-term differential operators,” Differents. Uravneniya, 2(5):634–639 (1966).MATHGoogle Scholar
  262. 261.
    P.E. Tovstik, “Normal degeneracy of boundary value problems,” Vestn. Leningr.Univ., No. 19, 124–134 (1963).MathSciNetGoogle Scholar
  263. 262.
    F. Tricomi, Differential Equations [Russian translation], IL, Moscow (1962).MATHGoogle Scholar
  264. 263.
    O. Tukeshov, “Periodic solutions of systems of singularly perturbed equations with delays,” in: Proceedings of the First Inter-university Science and Theory Conference of Science Teachers, Research Workers, and Students of the Universities of the Kirgiz SSR Dedicated to the Fortieth Anniversary of the Formation of the Kirgiz SSR and of the Communist Party of the Kirgiz SSR, Mektep, Frunze (1966), p. 143.Google Scholar
  265. 264.
    V. A. Tupchiev, “On the existence, uniqueness, and asymptotic behavior of the solution of the boundary value problem for a system of differential equations containing a small parameter attached to the highest derivative,” Dokl. Akad. Nauk SSSR, 142(6): 1261–1264 (1962).MathSciNetGoogle Scholar
  266. 265.
    V. A. Tupchiev, “The asymptotic behavior of the solution of the boundary value problem for a system of first-order differential equations containing a small parameter attached to the derivative,” Dokl. Akad. Nauk SSSR, 143(6):1296–1299(1962).MathSciNetGoogle Scholar
  267. 266.
    V. A. Tupchiev, “On corner solutions of boundary value problems for a system of fint-order equations containing a small parameter attached to the derivative,” Vestn. Mosk. Univ. Matem., Mekhan., No. 3, 17–24 (1963).Google Scholar
  268. 267.
    V. A. Tupchiev, “On the problem of decomposition of an arbitrary discontinuity in the case of a system of two quasi-linear first-order equations,” Zh. Vychisl. Matem, i Matem. Fiz., No. 5, 817–825 (1964).Google Scholar
  269. 268.
    Wu Chochun, “The theory of singular perturbations of ordinary differential equations,” Progr. Math., 5(3):224–254 (1962).Google Scholar
  270. 269.
    L. D. Faddeev, “Properties of the S-matrix of the one-dimensional Schroe-dinger equation,” Trudy Matem. Inst. Akad. Nauk SSSR, 73:314–336 (1964).MathSciNetMATHGoogle Scholar
  271. 270.
    S.V. Fal’kovich, “The asymptotic expansion of the Chaplyagin function,” Uch. Zap. Saratovsk. Univ., 70:207–210 (1961).Google Scholar
  272. 271.
    M. V. Fedoryuk, “The asymptotic behavior of the discrete spectrum of the operator w″(x) — λ2p(x)w(x),” Matem. Sbornik, 68(1):81–110 (1965).Google Scholar
  273. 272.
    M. V. Fedoryuk, “The one-dimensional scattering problem in the quasi-classical approximation, Part 1,” Differents. Uravneniya, 1(5):631–646 (1965).Google Scholar
  274. 273.
    M. V. Fedoryuk, “The one-dimensional scattering problem in the quasi-classical approximation, Part 2,” Differents. Uravneniya, 1(11):1525–1536 (1965).MathSciNetGoogle Scholar
  275. 274.
    M. V. Fedoryuk, “The topology of the Stokes line of a second-order equation,” Izv. Akad. Nauk SSSR, Ser. Matem., 29(3):645–656 (1965).Google Scholar
  276. 275.
    M. V. Fedoryuk, “Asymptotic methods in the theory of singular one-dimensional differential operators,” Trudy Mosk. Matern. Obshchestva, Vol. 15, 296–345 (1966).Google Scholar
  277. 276.
    M. V. Fedoryuk, “The asymptotic behavior of the solutions of linear ordinary differential equations of order n,” Differents. Uravneniya, 2(4):492–507 (1966).Google Scholar
  278. 277.
    M. V. Fedoryuk, “The asymptotic behavior of the eigenvalues and eigenfunc-tions of singular one-dimensional differential operators,” Dokl. Akad. Nauk SSSR, 169(2):288–291 (1966).MathSciNetGoogle Scholar
  279. 278.
    S. F. Feshchenko, N. I. Shkil’, and L. D. Nikolenko, Asymptotic Methods in the Theory of Differential Equations, Naukova Dumka, Kiev (1966).Google Scholar
  280. 279.
    A.N. Filatov, “On the method of averaging for systems of integro-differential equations,” Dokl. Akad. Nauk SSSR, 105(3):490–492 (1965).MathSciNetGoogle Scholar
  281. 280.
    A.N. Filatov, “Averaging in systems of differential equations not explicitly solved for the derivative,” Dokl. Akad. Nauk SSSR, 172(4):795–797 (1967).MathSciNetGoogle Scholar
  282. 281.
    V.I. Fodchuk, “The construction of asymptotic solutions for nonstationary differential equations containing a retarded argument and a small parameter,” Ukrainsk. Matem. Zh., 14(4):435–440 (1962).CrossRefGoogle Scholar
  283. 282.
    V.I. Fodchuk, “On the continuous dependence of the solutions of differential equations containing a retarded argument on a parameter,” Ukrainsk. Matem. Zh., 16(2):273–279(1964);MathSciNetGoogle Scholar
  284. 283.
    V. I. Fodchuk, “An investigation of the integral manifolds for systems of nonlinear differential equations containing a retarded argument,” Ukrainsk. Matem. Zh., 17(4):94–102 (1965).CrossRefGoogle Scholar
  285. 284.
    B. M. Fomel’, “Discontinuous oscillations in a dynamic multistable element,” in: Computing Systems, No. 21, Novosibirsk (1966), pp. 3–32.Google Scholar
  286. 285.
    A. Halanay, “The averaging method for systems of differential equations containing a retarded argument,” Rev. Math. Pures et Appl. (RPR), 4(3):467–483 (1959).MathSciNetMATHGoogle Scholar
  287. 286.
    A. Halanay, “Singular perturbations of self-regulating systems with retardation,” Rev. Math. Pures et Appl.(RPR), 7(4):627–631 (1962).MathSciNetMATHGoogle Scholar
  288. 287.
    A. Halanay, “Periodic and almost-periodic solutions of some singularly perturbed systems with retardation,” Rev. Math. Pures et Appl. (RPR), Vol. 8, 285–292 (1963).MathSciNetMATHGoogle Scholar
  289. 288.
    A. Halanay, “Singular perturbations of periodic systems. The critical case,” Rev. Roumaine Math. Pures et Appl., 11(8):951–960 (1966).MathSciNetMATHGoogle Scholar
  290. 289.
    M. M. Khapaev, “Asymptotic expansions of hypergeometric and degenerate hydrogeometric functions,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 5, 98–101 (1961).Google Scholar
  291. 290.
    M. M. Khapaev, “Linear differential equations containing a small parameter attached to some of the highest derivatives in the neighborhood of a regular singularity of the equation,” Usp. Matem. Nauk 16(4):187–194 (1961).MathSciNetMATHGoogle Scholar
  292. 291.
    M. M. Khapaev, “The asymptotic behavior of the solutions of linear ordinary differential equations containing a small parameter attached to the highest derivatives in the neighborhood of an irregular singularity,” Matem. Sbornik, 57(2):187–200 (1962).MathSciNetGoogle Scholar
  293. 292.
    M. M. Khapaev, “On the averaging method and several problems associated with averaging,” Differents. Uravneniya, 2(5):600–608 (1966).Google Scholar
  294. 293.
    R. V. Khokhlov, A Method Based on Step-by-Step Simplification of Contracted Equations and Its Application to Problems in Radiophysics, Doctoral Dissertation, Physics Faculty, Moscow State University (1961).Google Scholar
  295. 294.
    A. P. Khromov, “Expansion in eigenfunctions of linear ordinary differential operators on a finite interval,” Dokl. Akad. Nauk SSSR, 146(6):1294–1297 (1962).MathSciNetGoogle Scholar
  296. 295.
    A. P. Khromov, “Expansion in eigenfunctions of ordinary differential operators with irregular decomposable boundary conditions,” Dokl. Akad. Nauk SSSR, 152(6):1324–1326(1963).MathSciNetGoogle Scholar
  297. 296.
    J. K. Hale and G. Seifert, “Bounded and almost-periodic solutions of singularly perturbed equations,” In: International Union on Theoret. and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR, Kiev (1961), 9 pp.Google Scholar
  298. 297.
    F. L. Chernous’ko, “Resonance phenomena in the motion of a satellite about the center of mass,” Zh. Vychisl.Matem, i Matem. Fiz., 3(3):528–538 (1963).MathSciNetGoogle Scholar
  299. 298.
    F. L. Chernous’ko, “On resonance in an essentially nonlinear systems,” Zh. Vychisl. Matem, i Matem. Fiz., 3(1): 131–144, (1963).Google Scholar
  300. 299.
    T. M. Cherry, “Uniform asymptotic formulas for functions with turning points,” in: Matematika [a collection of Russian translations], 9(4):87–118 (1965).Google Scholar
  301. 300.
    A. B. Shabat, “Boundary value problems involving a small parameter in the case of linear differential equations,” Usp. Matem. Nauk, 17(1):235–241 (1962).MATHGoogle Scholar
  302. 301.
    M. K. Shashina, “The asymptotic behavior of the solution of a differential equation containing a small parameter attached to the highest derivative and a retardation.,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 4, Patrice Lumumba University (1967), pp. 173–181.Google Scholar
  303. 302.
    M. K. Shashina, “The asymptotic behavior of the solution of equations containing a small parameter attached to the highest derivative and a pertrubed argument,” Trudy Univ. Drozhby Narodov im. Patrisa Lumumby, 21:111–123 (1967).Google Scholar
  304. 303.
    R. F. Shevchenko, “Regularization of the trace of an ordinary differential operator,” Vestn. Mosk. Univ. Matem., Mekhan., No. 6, 28–36 (1965).Google Scholar
  305. 304.
    R. F. Shevchenko, “On the trace of a differential operator,” Dokl. Akad. Nauk SSSR, 164(1):62–65 (1965).MathSciNetGoogle Scholar
  306. 305.
    R. F. Shevchenko, “On the zeros of almost-cylindrical functions,” Vestn. Wosk. Univ. Matem., Mekhan., No. 5, 12–15 (1966).Google Scholar
  307. 306.
    A. A. Shishkin, “The eigenvalues and eigenfunctions of some fourth-order differential operators containing a small parameter attached to the highest derivative,” Dokl. Akad. Nauk SSSR, 123(2):249–251 (1958).MathSciNetMATHGoogle Scholar
  308. 307.
    N. I. Shkir, “The asymptotic behavior of linear systems when the characteristic equation has multiple roots,” Ukrainsk. Matem. Zh., 14(4):383–392 (1962).CrossRefGoogle Scholar
  309. 308.
    N.I. Shkir, “The asymptotic solution of a system of linear differential equations when the characteristic equation has multiple roots,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 2, 176–185 (1964).Google Scholar
  310. 309.
    N.I. Shkil’, “Systems of linear differential equations containing a small parameter attached to some of the derivatives,” Differents. Uravneniya, 1(7):868–879 (1965).Google Scholar
  311. 310.
    N.I. Shkil’, “The construction of a general asymptotic solution of a system of linear differential equations containing a small parameter,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 1, 161–169 (1966).Google Scholar
  312. 311.
    A.M. Shusterovich, “An approximate solution of the phase equation describing the oscillations of a vacuum-tube oscillator subject to an external emf,” Radiotekhnika i Elektronika, 5(4): 568–577 (1960).Google Scholar
  313. 312.
    V. A. Yavrin, “The trace formula for Sturm-Liouville operators,” Aikakan SSSR Gitutyunneri Akademiya, Zekuitsner, 41(1): 14–21 (1963).Google Scholar
  314. 313.
    V. A. Yavrin, “The regularized trace of the difference of two singular Sturm-Liouville operators,” Dokl. Akad. Nauk SSSR, 169(1):49–52 (1966).MathSciNetGoogle Scholar
  315. 314.
    V. Alfaro and T. de Regge, Potential Scattering, Amsterdam (1965).Google Scholar
  316. 315.
    C. H. Wilcox (ed.), Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, London (1964), 249 pp.MATHGoogle Scholar
  317. 316.
    F. V. Atkinson, “Wave propagation and the Bremmer series,” J. Math. Analysis and Applic, 1(3–4):255–276 (1960).MATHCrossRefGoogle Scholar
  318. 317.
    R. Bdlman, Stability Theory of Differential Equations, McGraw-Hill, New York(1953).Google Scholar
  319. 318.
    R. Bellman and K. L. Cooke, “On the limit of solutions of differential-diffeience equations as the retardation approaches zero,” Proc. Nat. Acad. Sci. USA 45(7):1026–1028 (1959).MathSciNetMATHCrossRefGoogle Scholar
  320. 319.
    L. Beig, “Asymptotische Auflösung von Differential-Funktionalgleichungen,” Math Nachr., 17(3–6):195–210 (1959).MathSciNetGoogle Scholar
  321. 320.
    L. Beig, “Asymptotische Lösungen für Operatorgleichungen,” Z. Angew. Math, und Mech., 45(5):333–352 (1965).CrossRefGoogle Scholar
  322. 321.
    B. L. Bieberbach, Theorie der Gewöhnlichen Differentialgleichungen, 2nd ed., Springer, Berlin (1965), 389 pp.MATHCrossRefGoogle Scholar
  323. 322.
    G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter,” Trans. Am. Math. Soc., Vol. 9, 219–231 (1908).MathSciNetCrossRefGoogle Scholar
  324. 323.
    K. Bochenek, “Les solutions asymptotiques des équations différentielles et l’évalution des restes,” in: Symposium on the Numerical Treatment of Ordinary Differential Equations, Integral, and Integrodifferential Equations, Birkhäuser, Berlin-Stuttgart (1960), pp. 430–440.Google Scholar
  325. 324.
    A. Bottino, A.M. Longoni, and T. de Regge, “Potential scattering for complex energy and angular momentum,” Nuovo Cimento, 23(6):954–1004 (1962).MathSciNetCrossRefGoogle Scholar
  326. 325.
    T. F. Bridgland, Jr., “Asymptotic behavior of the solutions of nonhomogene -ous differential equations,” Proc. Am. Math. Soc., 12(4):546–552 (1961).MathSciNetMATHCrossRefGoogle Scholar
  327. 326.
    S. Cerneau, “Sur la construction de solutions presque périodiques de problèmes de perturbation singulière,” Compt. Rendus Acad. Sci., 261(21):4311–4314(1965).MathSciNetMATHGoogle Scholar
  328. 327.
    L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Ergebn. Math., No. 16 (1959), 271 pp.MathSciNetGoogle Scholar
  329. 328.
    C. R. Chester and J. B. Keller, “Asymptotic solutions of systems of linear ordinary differential equations with discontinuous coefficients,” J. Math, and Mech., 10(4):557–567 (1961).MathSciNetMATHGoogle Scholar
  330. 329.
    K. Chiba, “Note on the asymptotic behavior of solutions of a system of linear ordinary differential equations,” Comment. Math. Univ. St. Pauli, 13(11):51–62 (1965).MathSciNetMATHGoogle Scholar
  331. 330.
    R. A. Clark, “Asymptotic solutions of a nonhomogene ous differential equation with a turning point,” Arch. Ration. Mech. and Analysis, 12(1):34–51 (1963).MATHCrossRefGoogle Scholar
  332. 331.
    E. A. Coddington and N. Levinson, “A boundary value problem for a nonlinear differential equation with a small parameter,” Proc. Am. Math. Soc., Vol. 3, 73–81 (1952).MathSciNetMATHCrossRefGoogle Scholar
  333. 332.
    J. H. E. Cohn, “On the number of negative eigenvalues of a singular boundary value problem. II,” J. London Math. Soc., 41(3):469–473 (1966).MathSciNetMATHCrossRefGoogle Scholar
  334. 333.
    R. H. Cole, “The expansion problem with boundary conditions at a finite set of points” Can. J. Math., 13(3):462–479 (1961).MATHCrossRefGoogle Scholar
  335. 334.
    K. L. Cooke, “The condition of regular degeneration for singularly perturbed linear differential-difference equations,” J. Differential Equat., 1(1):39–94 (1965).MathSciNetMATHCrossRefGoogle Scholar
  336. 335.
    K. L. Cooke and K. R. Meyer, “The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations,” J. Math. Analysis and Applic, 14(1):83–106 (1966).MathSciNetMATHCrossRefGoogle Scholar
  337. 336.
    P. Dean, “The constrained quantum mechanical harmonic oscillator,” Proc Cambridge Phil. Soc., 62(2):277–286 (1966).MathSciNetCrossRefGoogle Scholar
  338. 337.
    A. Devinatz, “The asymptotic nature of the solutions of certain linear systems of differential equations,” Pacif. J. Math., 15(1):75–83 (1965).MathSciNetMATHGoogle Scholar
  339. 338.
    C. L. Dolph, “Recent developments in some non-self-adjoint problems of mathematical physics,” Bull. Am. Math. Soc., 67(1): 1–69 (1961).MathSciNetMATHCrossRefGoogle Scholar
  340. 339.
    W. Eberhard, “Das asymptotische Verhalten der Greenschen Funktion irregulärer Eigenwert próbie me mit zerfallenden Randbedingungen,” Math. Z., 86(1):45–53(1964).MathSciNetMATHCrossRefGoogle Scholar
  341. 340.
    W. Eberhard, “Die Entwicklungen nach Eigenfunktionen irregulärer Eigenwertprobleme mit zerfallenden Randbedingungen,” Math. Z., 86(3):205–214 (1964).MathSciNetMATHCrossRefGoogle Scholar
  342. 341.
    W. Eberhard, “Lineare Eigenwertprobleme beliebiger Ordnung mit zerfallenden Randbedinungen,” Ber. Kernforschungsalange Jülich, No. 176 (1964), 92 pp.Google Scholar
  343. 342.
    W. Eberhard, “Die Entwicklungen nach Eigenfunktionen irregulärer Eigenwertprobleme mit zerfallenden Randbedingungen, II,” Math. Z., 90(2):126–137 (1965).MathSciNetMATHCrossRefGoogle Scholar
  344. 343.
    A. Erdélyi, Asymptotic Expansions, Dover Publications, New York (1956).MATHGoogle Scholar
  345. 344.
    A. Erdélyi, “Singular perturbations,” Bull. Am. Math. Soc., 68(4):420–424 (1962).MATHCrossRefGoogle Scholar
  346. 345.
    A. Erdélyi, “On a nonlinear boundary value problem involving a small parameter,” J. Austral. Math. Soc., 2(4):425–439 (1962).MathSciNetMATHCrossRefGoogle Scholar
  347. 346.
    A. Erdélyi, “Note on a paper by E. C. Titchmarsh: On the nature of the spectrum in problems of ielativistic quantum mechanics,” Quart. J. Math., 14(54): 147–152 (1963).MATHCrossRefGoogle Scholar
  348. 347.
    A. Erdélyi, “Singular perturbations of boundary value problems involving ordinary differential equations,” J. Soc. Ind. Appl. Math., 11(1):105–116 (1963).MATHCrossRefGoogle Scholar
  349. 348.
    M. Fertig, “Despre compcrtarea integralelor acutiilor diferentiale liniare cu coeficienti, care depind de un parametru,” Studia Univ. Babes-Bolyai, Math.-Phys., No. 1 (1960), pp. 121–130.MathSciNetGoogle Scholar
  350. 349.
    M. Fertig, “Über das Verhalten der Lösungen eines Systems von Differentialgleichungen mit kleinem Parameter,” Mathematica (RPR), 2(2):217–252 (1960).MathSciNetGoogle Scholar
  351. 350.
    J. G. Fikioris, “Asymptotic expansions of solutions of differential equations,” J. Math. Phys., 6(7):1131–1148 (1965).MathSciNetMATHCrossRefGoogle Scholar
  352. 351.
    L. Flatto and N. Levinson, “Periodic solutions of singularly perturbed systems,” J. Rational Mech. and Analysis 4(6):943–950 (1955).MathSciNetMATHGoogle Scholar
  353. 352.
    K. O. Friedrichs, “Asymptotic phenomena in mathematical physics,” Bull. Am. Math. Soc., 61(6):485–504 (1955).MathSciNetMATHCrossRefGoogle Scholar
  354. 353.
    K. O. Friedrichs and W. R. Wasow, “Singular perturbations of nonlinear oscillations,” Duke Math. J., 13(3):367–381 (1946).MathSciNetMATHCrossRefGoogle Scholar
  355. 354.
    N. Fröman and P. O. Fröman, The JWKB Approximation, Amsterdam (1965).Google Scholar
  356. 355.
    M. Giertz, “On the solutions in L2(-∞,∞) of y″+(λ-q(x))y = 0 when q(x) is rapidly increasing,” Proc. London Math. Soc., 14(53):53–73 (1964).MathSciNetMATHCrossRefGoogle Scholar
  357. 356.
    R. C. Gilbert and V. A. Kramer, “Trace formulas for a perturbed operator,” Duke Math. J., 30(2):275–296 (1963).MathSciNetMATHCrossRefGoogle Scholar
  358. 357.
    R. C. Gilbert and V. A. Kramer, “Trace formulas for powers of a Sturm -Liouville operator,” Can. J.Math., 16(3):412–422 (1964).MathSciNetMATHCrossRefGoogle Scholar
  359. 358.
    S. Haber and N. Levinson, “A boundary value problem for a singularly perturbed differential equation,” Proc. Am. Math. Soc., Vol. 6, 866–872 (1955).MathSciNetMATHCrossRefGoogle Scholar
  360. 359.
    A. Halanay, “Perturbations singulières des systèmes a retardement,” Compt. Rend. Acad. Sci., 253(16):1649–1650 (1961).MATHGoogle Scholar
  361. 360.
    A. Halanay, “Perturbations singulières de systèmes autonomes,” Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. e Natur., 32(2):167–169 (1962).MathSciNetMATHGoogle Scholar
  362. 361.
    A. Halanay, “On the method of averaging for differential equations with retarded argument,” J. Math. Analysis and Applic, 14(1):70–76 (1966).MathSciNetMATHCrossRefGoogle Scholar
  363. 362.
    A. Halanay, “An invariant surface for some linear singularly perturbed systems with time lag,” J. Differential Equat., 2(1):33–46 (1966).MathSciNetMATHCrossRefGoogle Scholar
  364. 363.
    J. K. Hale, “On the method of Krylov-Bogoliubov- Mitr opolski for the existence of integral manifolds of perturbed differential systems,” Bol. Soc. Mat. Mexic, 5(1):51–57 (1960).MathSciNetMATHGoogle Scholar
  365. 364.
    J. K. Hale, “On the method of averaging,” IRE Trans. Circuit Theory, 7(4):517–519(1960).MathSciNetGoogle Scholar
  366. 365.
    J. K. Hale, “Integral manifolds of perturbed differential systems,” Ann. Math., 73(3):496–531 (1961).MathSciNetMATHCrossRefGoogle Scholar
  367. 366.
    J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill, New York (1963).MATHGoogle Scholar
  368. 367.
    J. K. Hale, “Averaging methods for differential equations with retarded arguments and a small parameter,” J. Differential Equat., 2(1):57–73 (1966).MathSciNetMATHCrossRefGoogle Scholar
  369. 368.
    J. K. Hale and G. Seifert, “Bonded and almost periodic solutions of singularly perturbed equations,” J. Math. Analysis and Applic, 3(1): 18–24 (1961).MathSciNetMATHCrossRefGoogle Scholar
  370. 369.
    R. J. Hanson, “Reduction theorems for systems of ordinary differential equations with turning point,” J. Math. Analysis and Applic, 16(2):280–301 (1966).MathSciNetMATHCrossRefGoogle Scholar
  371. 370.
    W. A. Harris, Jr., “Singular perturbations of eigenvalue problems,” Arch. Rational Mech. and Analysis, 7(3):224–241 (1961),MathSciNetMATHCrossRefGoogle Scholar
  372. 371.
    W. A. Harris, Jr., “Singular perturbations of two-point boundary problems,” J. Math, and Mech., 11(3):371–382 (1962).MathSciNetMATHGoogle Scholar
  373. 372.
    W. A. Harris, Jr., “Singular perturbations of a boundary value problem for a nonlinear system of differential equations,” Duke Math. J., 29(3):429–445 (1962).MathSciNetMATHCrossRefGoogle Scholar
  374. 373.
    P. Hartman, “The existence of large or small solutions of linear differential equations,” Duke Math. J., 28(3):421–429 (1961).MathSciNetMATHCrossRefGoogle Scholar
  375. 374.
    J. Heading, “The nonsingular embedding of transition processes within a more general framework of coupled variables,” J. Res. Nat, Bur. Std., D65(6):595–616 (1961).MathSciNetGoogle Scholar
  376. 375.
    J. Heading, An Introduction to Phase-Integral Methocs, Methuen, London (1962).Google Scholar
  377. 376.
    J. Heading, “Uniform approximate solutions of certain n-th-order differential equations. I,” Proc Cambridge Phil. Soc., 59(1):95–110 (1963).MathSciNetMATHCrossRefGoogle Scholar
  378. 377.
    H. Hochstadt, “Asymptotic estimates for the Sturm-Liouville spectrum,” Comm. Pure and Appl. Math., 14(4):749–764 (1961).MathSciNetMATHCrossRefGoogle Scholar
  379. 378.
    H. Hochstadt, “On the asymptotic spectrum of Hill’s equation,” Arch. Math., 14(1):34–38 (1963).MathSciNetMATHCrossRefGoogle Scholar
  380. 379.
    H. Hochstadt, “Estimates on the stability intervals for Hill’s equation,” Proc. Am. Math. Soc., 14(6):930–932 (1963).MathSciNetMATHGoogle Scholar
  381. 380.
    H. Hochstadt, “Functiontheoretic properties of the discriminant of Hill’s equation,” Math. Z., 82(3):236–242 (1963).MathSciNetCrossRefGoogle Scholar
  382. 381.
    H. Hochstadt, “Instability intervals of Hill’s equation,” Comm. Pure and Appl. Math., 17(2):251–255 (1964).MathSciNetMATHCrossRefGoogle Scholar
  383. 382.
    H. Hochstadt, “A stability estimate for differential equations with periodic coefficients,” Arch. Math., 15(4–5):318–320 (1964).MathSciNetMATHCrossRefGoogle Scholar
  384. 383.
    F. C. Hoppensteadt, Singular Perturbations on the Infinite Interval, Doctoral Dissertation, University of Wisconsin (1965), 51 pp. Dissertation Abstr., 25(12) Part 1:7295–7296 (1965).Google Scholar
  385. 384.
    P.E. Hsieh, “A turning point problem for a system of linear ordinary differential equations of the third order,” Arch. Rational Mech. and Analysis, 19(2):117–148 (1965).MathSciNetMATHCrossRefGoogle Scholar
  386. 385.
    P. E. Hsieh and Y. Sibuya, “On the asymptotic integration of second-order linear ordinary differential equations with polynomial coefficients,” J. Math. Analysis and Applic, 16(1):84–103 (1966).MathSciNetMATHCrossRefGoogle Scholar
  387. 386.
    M. Hukuhara, “Sur les pointes singuliers des équations différentielles linéaires; Domaine réel,” Hokkaido Imperial University, 1(2):13–88 (1934).Google Scholar
  388. 387.
    M. Iwano, “Convergent solutioa of a system of ordinary nonlinear differential equations containing a small parameter,” Comment. Math. Univ. St. Pauli, 10(1):27–56 (1961).MathSciNetMATHGoogle Scholar
  389. 388.
    M. Iwano, “On a system of non-linear ordinary differential equations containing a small parameter. II, ” Kodai Math. Seminar Reports, 14(2): 95–109 (1962).MathSciNetMATHCrossRefGoogle Scholar
  390. 389.
    M. Iwano, “Asymptotic solution of Whittaker’s differential equation as the moduli of the independent variables and two parameters tend to infinity,” Japan J. Math., Vol. 33, 1–92 (1963).MathSciNetMATHGoogle Scholar
  391. 390.
    M. Iwano, “On the behavior of the solutions of an n-th-order linear ordinary differential equation,” Japan J. Math., Vol. 34, 1–52 (1964).MathSciNetMATHGoogle Scholar
  392. 391.
    M. Iwano, “On the study of asymptotic solutions of a system of linear ordinary differential equations containing a parameter with a singular point,” Japan J. Math., 35(1):1–30 (1965).MathSciNetMATHGoogle Scholar
  393. 392.
    M. Iwano, and T. Saito, “On a system of non-linear ordinary differential equations containing a parameter,” Kodai Math. Seminar Reports, 13(2): 65–92 (1961).MathSciNetMATHCrossRefGoogle Scholar
  394. 393.
    M. Iwano and Y. Sibuya, “Reduction of the order of a linear ordinary differential equation containing a small parameter,” Kodai Math. Seminar Reports, 15(1):1–28 (1963).MathSciNetCrossRefGoogle Scholar
  395. 394.
    K. Jörgens, “Die asymptotische Verteilung der Eigenwerte singulärer Sturm-Liouville-Probleme,” Suomalais. Tideakat. Toimituks, Ser. A1, No. 336/4 (1963), 24 pp.Google Scholar
  396. 395.
    S. Jorna, “Derivation of Green-type, transitional, and uniform asymptotic expansions from differential equations. I. General theory and application to mocified Bessel functions of iarge order,” Proc. Roy. Soc., A281(1384):99–110 (1964).MathSciNetGoogle Scholar
  397. 396.
    S. Jorna, “Derivation of Green-type, transitional, and uniform asymptotic expansions from differential equations. II. Whittaker functions Wk,m for large k, and for large |k2-m2|,” Proc. Roy. Soc., A281(1384): 111–129 (1964).MathSciNetGoogle Scholar
  398. 397.
    S. Jorna, “Derivation of the Green-type, transitional, and uniform asymptotic expansions from differential equations. III. The confluent hypergeometric functions U(a, c, z) for large |c|,” Proc. Roy, Soc., A284(1399):531–539 (1965).MathSciNetGoogle Scholar
  399. 398.
    S. Jorna, “Derivation of Green-type, transitional, and uniform asymptotic expansions from differential equations. IV. Periodic Mathieu functions ce(z, h) and se(z, h) for large h,” Proc. Roy. Soc., A286(1406):366–375 (1965).MathSciNetGoogle Scholar
  400. 399.
    I. Kay, “Some remarks concerning the Bremmer series,” J. Math. Analysis and Applic, 3(1):40–49(1961).MathSciNetMATHCrossRefGoogle Scholar
  401. 400.
    N. D. Kazarinoff and R. K. Ritt, “Scalar diffraction theory and turning point problems,” Arch. Rational Mech. and Analysis, 5(2):177–186 (1960).MathSciNetMATHCrossRefGoogle Scholar
  402. 401.
    H. B. Keller and J. B. Keller, “Exponential-like solutions of systems of linear ordinary differential equations,” J. Soc. Ind. Appl. Math., 10(2):246–259 (1962).MATHCrossRefGoogle Scholar
  403. 402.
    J. Kisynski, “Sur les équations hyperboliques avec petit paramétre,”Colloq. Math., 10(2):331–343(1963).MathSciNetMATHGoogle Scholar
  404. 403.
    M. Kohno, “A two-point connection problem involving logarithmic polynomials,” Publications Res. Inst. Math. Sci., A2(2):269–305 (1966).MathSciNetCrossRefGoogle Scholar
  405. 404.
    J. Kolãrova, “Asymptotické vzorce pro řešeni lineárni differenciální rovnice. 3. Radu v připadě neoscilatorickém,” in: Sb. Vysokého ŭcení techn, Brně, No. 1–4 (1963), pp. 253–257.Google Scholar
  406. 405.
    J. Kurzweil, “Über die asymptotische Methode in der Theorie der nicht -linearen Differentialgleichungen,” Abhandl. Dtsch. Akad. Wiss. Berlin, Kl. Math., Phys. und Techn., No. 1, 1–9 (1965).MathSciNetGoogle Scholar
  407. 406.
    R. E. Langer, “The asymptotic solutions of ordinary linear differential equations of the second order with special reference to the Stokes phenomenon,” Bull. Am. Math. Soc., 11(8):545–586 (1934).CrossRefGoogle Scholar
  408. 407.
    R. E. Langer, “Turning points in linear asymptotic theory,” Bol. Soc. Mat. Mexic, 5(1):1–12(1960).MATHGoogle Scholar
  409. 408.
    R. E. Langer, “On the construction of related equations for the asymptotic theory of linear ordinary differential equations about a turning point,” Enseign. Math., 8(3–4):218–237 (1962).MATHGoogle Scholar
  410. 409.
    J. Lanke, “On the asymptotic distribution of eigenvalues of certain one-dimensional Sturm -Liouville operators,” Math. Scad., 9(1a):69–70 (1961)MathSciNetMATHGoogle Scholar
  411. 410.
    A.C. Lazer, “On the asymptotic behavior of the solutions of the differential equation y″ + p(x)y = 0,” Proc Am. Math. Soc., 16(6)1295–1298 (1965).MathSciNetMATHGoogle Scholar
  412. 411.
    J. J. Levin, “Singular perturbations of nonlinear systems of differential equations related to conditional stability,” Duke Math. J., 23(4):609–620 (1956).MathSciNetMATHCrossRefGoogle Scholar
  413. 412.
    J.J. Levin, “The asymptotic behavior of the stable initial manifolds of a system of nonlinear differential equations,” Trans. Am. Math. Soc., 85(2):357–368 (1957).MATHCrossRefGoogle Scholar
  414. 413.
    J. J. Levin and N. Levinson, “Singular perturbations of non-linear systems of differential equations and an associated boundary layer equation,” J. Rational Mech. and Analysis, 3(12):247–270 (1954).MathSciNetMATHGoogle Scholar
  415. 414.
    N. Levinson, “Perturbations of discontinuous solutions of nonlinear systems of differential equations,” Acta Math., 82(1–2):71–106 (1950).MathSciNetMATHCrossRefGoogle Scholar
  416. 415.
    N. Levinson, “A boundary value problem for a singularly perturbed differential equation,” Duke Math. J., 25(2):331–342 (1958).MathSciNetMATHCrossRefGoogle Scholar
  417. 416.
    N. Levinson, “The stability of linear, real, perodic self-adjoint systems of differential equations,” J. Math Analysis and Applic, 6(3):473–482 (1963).MathSciNetMATHCrossRefGoogle Scholar
  418. 417.
    J. W. Macki, Singular Perturbations of a Boundary-Value Problem for a System of Nonlinear Differential Equations, Doctoral Dissertation, California Institute of Technology (1964), 53 pp. Dissertation Abstr., 25(8):4728 (1965).Google Scholar
  419. 418.
    D. McGarvey, “Linear differential systems with periodic coefficients involving a large parameter,” J. Differential Equat., 2(2):115–142 (1966).MathSciNetMATHCrossRefGoogle Scholar
  420. 419.
    R. W. McKelvey, “Asymptotic solutions and indefinite boundary value problems,” in: asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 109–127.Google Scholar
  421. 420.
    J. B. McLeod, “On an integral in the distribution of eigenvalues,” Proc. Edinburgh Math. Soc., 12(4):205–208 (1961).MathSciNetMATHCrossRefGoogle Scholar
  422. 421.
    J. B. McLeod, “The determination of phase shift,” Quart. J. Math., 12(45):17–32 (1961).MathSciNetMATHCrossRefGoogle Scholar
  423. 422.
    J. B. McLeod, “The determination of the transmission coefficient,” Quart. J. Math., 12(46):153–158 (1961).MathSciNetMATHCrossRefGoogle Scholar
  424. 423.
    J. B. McLeod and E.C. Titchmarsh, “On the asymptotic distribution of eigenvalues,” Quart. J. Math., 10(40):313–320 (1959).MathSciNetMATHCrossRefGoogle Scholar
  425. 424.
    E. J. McShane, “On the solutions of the differential equation y″ + p2y = 0,” Proc. Am. Math. Soc., 17(1):55–61 (1966).MathSciNetMATHGoogle Scholar
  426. 425.
    A. Meir, D. Villett, and J. S. W. Wong, “A stability condition for y″ + p(x)y= 0,” Mich. Math. J., 13(2):169–170 (1966).CrossRefGoogle Scholar
  427. 426.
    W. L. Miranker, “Singular perturbation analyses of the differential equations of a tunnel diode circuit,” Quart. J. Appl. Math., 20(3):279–299 (1962).MathSciNetGoogle Scholar
  428. 427.
    E. F. Mishchenko and L. S. Pontryagin, “Differential equations with a small parameter attached to the higher derivatives and some problems in the theory of oscillation,” IRE Trans. Circuit Theory, 7(4):527–535 (1960).Google Scholar
  429. 428.
    L.I. Mishoe, “Fourier series and eigenfunction expansions associated with a non-self-adjoint differential equation,” Quart. J. Appl. Math., 20(2):175–181 (1962).MathSciNetMATHGoogle Scholar
  430. 429.
    E. L. Murphy and R. H. Good, Jr., “WKB connection formulas,” J. Math. Phys., 43(3):251–254 (1964).MathSciNetGoogle Scholar
  431. 430.
    M. Nagumo, “Über das verhalten des Integrals von λy″ + f (x, y, y’λ) = 0 für λ → 0,” Proc. Phys. Math. Soc. Japan, Vol. 21, 529–534 (1939).MathSciNetGoogle Scholar
  432. 431.
    M. Nagumo, “Perturbation and degeneration of evolutional equations in Banach spaces,” Osaka Math. J., 15(1):1–10 (1963).MathSciNetMATHGoogle Scholar
  433. 432.
    T. Nishimoto, “On matching methods in turning point problems,” Kodai Math. Seminar Reports, 17(3):198–221 (1965).MathSciNetMATHCrossRefGoogle Scholar
  434. 433.
    T. Nishimoto, “On a matching method for a linear ordinary differential equation containing a parameter. I,” Kodai Math. Seminar Reports, 17(4):307–328 (1965).MathSciNetMATHCrossRefGoogle Scholar
  435. 434.
    K. Okubo, “On certain reduction theorems for systems of differential equations which contain a turning point,” Proc. Japan Acad., 37(1):544–549 (1961).MathSciNetMATHCrossRefGoogle Scholar
  436. 435.
    K. Okubo, “A global representation of a fundamental set of solutions and a Stokes phenomenon for a system of linear ordinary differential equations,” J. Math. Soc. Japan, 15(3):268–288 (1963).MathSciNetMATHCrossRefGoogle Scholar
  437. 436.
    K. Okubo, “A connection problem involving a logarithmic function,” Publications Res. Inst. Math. Sci., A1(1):99–128 (1965).MathSciNetCrossRefGoogle Scholar
  438. 437.
    F. W. J. Olver, “Two inequalities for parabolic cylinder functions,” Proc. Cambridge Phil. Soc., 57(4):811–822 (1961).MathSciNetMATHCrossRefGoogle Scholar
  439. 438.
    F. W. J. Olver, “Error bounds for first approximations in turning-point problems,” J. Soc. Ind. Appl. Math., 11(3):748–772 (1963).MathSciNetMATHCrossRefGoogle Scholar
  440. 439.
    F. W. J. Olver, “Error analysis of phase-integral methods. I. General theory for simple turning points,” J. Res. Nat. Bur. Std., B69(4):271–290 (1965).MathSciNetGoogle Scholar
  441. 440.
    F. W. J. Olver, “Error analysis of phase-integral methods. II. Application to wave-penetration problems,” J. Res. Nat. Bur. Std., B69(4):291–300 (1965).MathSciNetGoogle Scholar
  442. 441.
    F. W. J. Olver, “On the asymptotic solutions of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker’s functions,” J. Soc. Ind. Appl. Math., B2(2):225–243 (1965).MathSciNetGoogle Scholar
  443. 442.
    F. W. J. Olver, “Error bounds for asymptotic expansions, with an application to cylinder functions of large argument,” in: Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 163–183.Google Scholar
  444. 443.
    F.W.J. Olver and F. Stenger, “Error bounds for asymptotic solutions of second -order differential equations having an irregular singularity of arbitrary rank,” J. Soc. Ind. Appl. Math., B2(2):244–249 (1965).MathSciNetGoogle Scholar
  445. 444.
    H. Payne, “Approximate solution of Hill’s equation,” J. Math. Phys., 7(3):474–478 (1966).MATHCrossRefGoogle Scholar
  446. 445.
    L. Perion, “Über lineare Differentialgleichungen mit reeler unabhängig Variabler,” in: Stizungsber. Bayer. Akad. Wiss. Math.-Naturwiss. K1. 1960, Munich (1961), pp. 1–10.Google Scholar
  447. 446.
    L. Perron, “Über das Verhalten der Integrale einer linearen Differentialgleichung, wenn die unabhängig Variable gegen +∞ geht,” in: Sitzungsber. Bayer. Akad. Wiss. Math.-Naturwiss. Kl. 1960, Munich (1961), pp. 35–53.Google Scholar
  448. 447.
    E. R. Pike, “On the related-equation method of asymptotic approximation (W. K. B. or A-A method). I. A proposed new existence theorem,” Quart. J. Meet, and Appl. Math., 17(1):105–124 (1964).MathSciNetMATHCrossRefGoogle Scholar
  449. 448.
    E. R. Pike, “On the related-equation method of asymptotic approximation (W. K. B. or A-A method). II. Direct solution’s of wave-penetration problems,” Quart. J. Mech. and Appl. Math., 17(3):369–379 (1964).MathSciNetMATHCrossRefGoogle Scholar
  450. 449.
    C. G. G. Pitts, “Asymptotic approximations to solutions of a second-order differential equation,” Quart. J. Math., 17(60):307–32C (1966).MathSciNetMATHCrossRefGoogle Scholar
  451. 450.
    M. Ráb, “Asymptotische Formeln für die Lösungen der Differentialgleichung y″ + q(x)y = 0,” Chekhosl. Matern. Zh., 14(2):203–221 (1964).Google Scholar
  452. 451.
    M. Ráb, “Note sur les formules asymptotiques pour les solutions d’un système d’équations différentielles linéaires,” Chekhosl. Matem. Zh., 16(1):127–129 (1966).Google Scholar
  453. 452.
    M. Ráb, “Les dévelopements asymptotiques des solutions de l’équation (py’)’ + qy = 0,” Arch. Mat., 2(1):1–17 (1966).MATHGoogle Scholar
  454. 453.
    E. R. Rang, “Periodic solutions of singular perturbation problems,” in: Proceedings of the International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Colorado Springs, 1961, Academic Press, New York (1963), pp. 377–383.Google Scholar
  455. 454.
    D. R. K. Rao, “Asymptotic behavior of differential systems,” Proc. Nat. Acad. India, A35(2):234–241 (1965).Google Scholar
  456. 455.
    B. W. Roos and W. C. Sangren, “Spectra for a pair of singular first-order differential equations,” Proc. Am. Math. Soc., 12(3):468–476 (1961).MathSciNetMATHCrossRefGoogle Scholar
  457. 456.
    B.W. Roos and W. C. Sangren, “Spectral theory of Dirac’s radial relativistic wave equation,” J. Math. Phys., 3(5):882–890 (1962).MathSciNetMATHCrossRefGoogle Scholar
  458. 457.
    B. W. Roos and W. C. Sangren, “Three spectral theorems for a pair of singular first-order differential equations,” Pacific J. Math., 12(3):1047–1055 (1962).MathSciNetMATHGoogle Scholar
  459. 458.
    B. W. Roos and W. C. Sangren, “Expansions associated with a pair of singular first-order differential equations,” J. Math. Phys., 4(8):999–1008 (1963).MathSciNetMATHCrossRefGoogle Scholar
  460. 459.
    B.W. Roos and W. C. Sangren, “Asymptotic solutions and an equiconvergence theorem for a pair of first-order differential equations,” J. Soc. Ind. Appl. Math., 11(2):421–430 (1963).MathSciNetMATHCrossRefGoogle Scholar
  461. 460.
    T. V. S. L. N. Sastry, Turning Point Problems for Certain Systems of Linear Differential Equations, Doctoral Dissertation, University of Wisconsin (1965), 73 pp. Dissertation Abstr., 26(9):5466 (1966).Google Scholar
  462. 461.
    Y. Sato, “On a system of nonlinear ordinary differential equations containing a small parameter,” Comment. Math. Univ. St. Pauli, 14(1):25–52 (1966).MATHGoogle Scholar
  463. 462.
    Y. Sibuya, “Sur réduction analytique d’un système d’équations différentielles ordinaires linéaires contenant un paramétre,” J. Fac. Sci. Univ. Tokyo, Sec. 1, 7(5):527–540 (1958).MathSciNetMATHGoogle Scholar
  464. 463.
    Y. Sibuya, “On nonlinear ordinary differential equations containing a parameter,” J. Math, and Mech., 9(3):369–397 (1960).MathSciNetMATHGoogle Scholar
  465. 464.
    Y. Sibuya, “On perturbations of discontinuous solutions of ordinary differential equations,” Natur. Sci. Report Ochanomizu Univ., 11(1): 1–18 (1960).MathSciNetMATHGoogle Scholar
  466. 465.
    Y. Sibuya, “Asymptotic solutions of a linear ordinary differential equation of n-th order about a simple turning point,” in: Proceedings of the International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Colorado Springs, 1961, Academic Press, New York (1963), pp. 485–488.Google Scholar
  467. 466.
    Y. Sibuya, “On the problem of turning points for a system of linear ordinary differential equations of higher order,” in: Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 145–162.Google Scholar
  468. 467.
    Y. Sibuya, “Asymptotic solutions of initial value problems of ordinary differential equations with a small parameter in the derivative, I,” Arch. Ratioaal Mech. and Analysis, 14(4):304–311 (1963).MathSciNetMATHGoogle Scholar
  469. 468.
    Y. Sibuya, “Asymptotic solutions of initial value problems of ordinary differential equations with a small parameter in the derivative. II,” Arch. Rational Mech. and Analysis, 15(3):247–262 (1964).MathSciNetMATHCrossRefGoogle Scholar
  470. 469.
    Y. Sibuya, “A block-diagcnalization theorem for systems of linear ordinary differential equations and its application,” SIAM J. Appl. Math., 14(3):468–475 (1966).MathSciNetMATHCrossRefGoogle Scholar
  471. 470.
    R. A. Smith, “Asymptotic stability of x″ + a(t)x″ + x = 0,” Quart. J.Math., 12(46): 123–126 (1961).MATHCrossRefGoogle Scholar
  472. 471.
    J. A. Smoller, “Singular perturbations and a theorem of Kisynski,” J. Math. Analysis and Applic, 12(1):105–114 (1965).MathSciNetMATHCrossRefGoogle Scholar
  473. 472.
    C. R. Steele, “On the asymptotic solution of nonhomogeneous ordinary differential equations with a large parameter,” Quart. J. Appl. Math., 23(3):193–201 (1965).MathSciNetMATHGoogle Scholar
  474. 473.
    E. C. G. Stückelberg, “Theorie der unelastischen Stösse zwischen Atomen,” Helv. Phys. Acta, Vol. 5, 369–422 (1932).Google Scholar
  475. 474.
    M. Švec, “Asymptotische Darstellung der Lösungen der Differentialgleichung y(n) + Q(x)y = 0, n = 3, 4,” Czechosl. Math. J., 12(4):572–581 (1962).Google Scholar
  476. 475.
    K. Takahashi, “Über eine asymptotische Darstellung der Lösung eines Systèmes von Differentialgleichungen, welche von zwei Parametern abhängen, und eine Anwendung auf spezielle Differentialgleichungen zweiter Ordung,” Tohoku Math. J., 13(1):1–17 (1961).MathSciNetMATHCrossRefGoogle Scholar
  477. 476.
    K. Takahashi, “Die Besselsche Differentialgleichung und eine lineare Differentialgleichung dritter Ordnung mit einem Wendepunkt,” Tohoku Math. J., 14(1):1–14 (1962).MathSciNetCrossRefGoogle Scholar
  478. 477.
    H. Tanabe, “Note on singular perturbation for abstract differential equations,” Osaka J. Math., 1(2):239–252 (1964).MathSciNetMATHGoogle Scholar
  479. 478.
    E.G. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Vol.1, Clarendon Press, Oxford (1946).Google Scholar
  480. 479.
    E. G. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Vol. II, Clarendon Press, Oxford (1958).MATHGoogle Scholar
  481. 480.
    E. G. Titchmarsh, “On the completeness problem for the eigenfunction formulae of relativistic quantum mechanics,” Proc. Roy. Soc., A262(1311):489–502 (1961).Google Scholar
  482. 481.
    E. G. Titchmarsh, “Some eigenfunction expansion formulae,” Proc. London Math. Soc., 11(41):159–168 (1961).MathSciNetMATHCrossRefGoogle Scholar
  483. 482.
    E. G. Titchmarsh, “On the nature of the spectrum in problems of relativistic quantum mechanics,” Quart. J. Math., 12(47):227–240 (1961).MathSciNetMATHCrossRefGoogle Scholar
  484. 483.
    E. G. Titchmarsh, “On an eigenvalue problem occurring in quantum mechanics,” in: Studies in Mathematical Analysis and Related Topics, University of California Press, Stanford (1962), pp. 399–403.Google Scholar
  485. 484.
    E. G. Titchmarsh, “On the nature of the spectrum in problems of relativistic quantum mechanics. II,”Quart. J. Math., 13(51):181–192 (1962).MathSciNetMATHCrossRefGoogle Scholar
  486. 485.
    E. G. Titchmarsh, “On the nature of the spectrum in problems of relativistic quantum mechanics. III,”Quart. J. Math., 13(52):255–263 (1962).MathSciNetMATHCrossRefGoogle Scholar
  487. 486.
    E.G. Titchmarsh, “On the relation between eigenvalues in relativsitic and non-relativistic quantum mechanics,” Proc. Roy. Soc., A266(1324):33–46 (1962).MathSciNetGoogle Scholar
  488. 487.
    W. F. Trench, “On the asymptotic behavior of solutions of second-order linear differential equations,” Proc. Am. Math. Soc., 14(1):12–14 (1953).MathSciNetCrossRefGoogle Scholar
  489. 488.
    H. L. Turrittin, “Asymptotic expansions of solutions of systems of ordinary differential equations,” in: Contributions to the Theory of Nonlinear Oscillations. II, Ann. Math. Studies, No. 29, Princeton (1936), pp. 81–116.Google Scholar
  490. 489.
    H. L. Turrittin,“Reduction of ordinary differential equations to the Birkhoff canonical form,” Trans. Am. Math. Soc., 107(3):485–507 (1963).MathSciNetMATHCrossRefGoogle Scholar
  491. 490.
    H. L. Turrittin, “Solvable related equations pertaining to turning point problems,” in: Asymptotic Solution of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 27–59.Google Scholar
  492. 491.
    V. M. Volosov, “Rotation and vibration of some perturbed systems,” in: Colloq. Internat. Centre Nat. Rech. Scient. (1965), Paper No. 148, pp. 237–241.Google Scholar
  493. 492.
    W. Wasow, “On the asymptotic solution of boundary value problems for ordinary differential equations containing a parameter,” J. Math. Phys., Vol. 23, 173–183(1944).MathSciNetGoogle Scholar
  494. 493.
    W. Wasow, “On the construction of periodic solutions of singular perturbation problems,” in: Ann. Math. Studies, No. 20, Princeton University Press (1950), pp. 313–350.Google Scholar
  495. 494.
    W. Wasow, “Asymptotic solution of the differential equation of hydrodynamic stability in a domain containing a transition point,” Ann. Math., Vol. 58, 222–252(1953).MathSciNetMATHCrossRefGoogle Scholar
  496. 495.
    W. Wasow, “Singular perturbations of boundary value problems for nonlinear differential equations of the second order,” Comm. Pure and Appl. Math., 9(1):93–113(1956).MathSciNetMATHCrossRefGoogle Scholar
  497. 496.
    W. Wasow, “Turning point problems for systems of linear differential equations. Part I: The formal theory,” Comm. Pure and Appl. Math., 14(3):657–673 (1961).MathSciNetMATHCrossRefGoogle Scholar
  498. 497.
    W. Wasow, “Turning point problems for systems of linear differential equations. Part II. The analytic theory,” Comm. Pure and Appl. Math., 15(2):173–187(1962).MathSciNetCrossRefGoogle Scholar
  499. 498.
    W. Wasow, “Singular perturbation problems of systems oftwo ordinary analytic differential equations,” Arch. Rational Mech. and Analysis, 14(1):61–80 (1963).MathSciNetMATHGoogle Scholar
  500. 499.
    W. Wasow, “Simplification of turning point problems for systems of linear differential equations,” Trans. Am. Math. Soc., 106(1):100–114 (1963).MathSciNetMATHCrossRefGoogle Scholar
  501. 500.
    W. Wasow, “Asymptotic expansions for ordinary differential equations — Trends and problems,” in: Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 3–26.Google Scholar
  502. 501.
    W. Wasow, “Asymptotic decomposition of systems of linear differential equations having poles with respect to a parameter,” Rend. Circolo Mat. Palermo, 13(3):329–344 (1965).MathSciNetCrossRefGoogle Scholar
  503. 502.
    W. Wasow, “Asymptotic simplification of self-adjoint differential equations with a parameter,” J. Differential Equat., 2(4):378–390 (1966).MathSciNetMATHCrossRefGoogle Scholar
  504. 503.
    W. Wasow, Asymptotic Expansion for Ordinary Differential Equations, John Wiley, New York (1966).Google Scholar
  505. 504.
    R. Zanovello, “Un’estensione di un teorema di Milloux,” Rend. Seminar Mat. Univ. Padova, 31(1):165–170 (1961).MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • V. F. Butuzov
  • A. B. Vasil’eva
  • M. V. Fedoryuk

There are no affiliations available

Personalised recommendations