Skip to main content

Asymptotic Methods in the Theory of Ordinary Differential Equations

  • Chapter
Mathematical Analysis

Part of the book series: Progress in Mathematics ((PM,volume 8))

Abstract

The main aim of investigations undertaken during the early stages of research into differential equations was the derivation of exact solutions. It was subsequently found, however, that the effective representation of the exact solution in terms of elementary functions is possible only for a limited number of special classes of differential equations. Therefore, the question of methods for the construction of approximate solutions of differential equations was recognized to be the main area of research. Work in this area proceeded along two directions: a) the development of numerical methods of solution and b) the development of the so-called asymptotic methods of solution. The aim of this review is to describe asymptotic methods at their present level of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Z. S. Agranovich and V. A. Marchenko, The Inverse Problem in the Theory of Scattering, Khar’kov Univ., Khar’kov (1960), 268 pp.

    Google Scholar 

  2. L. D. Akulenko and V.M. Volosov, “The problem of stationary rotations in an autonomous system,” Vestn. Mosk. Univ. Matem., Mekhan., No. 6, 34–39 (1966).

    MathSciNet  Google Scholar 

  3. L. D. Akulenko and V. M. Volosov, “Resonance in rotational systems,” Vestn. Mosk. Univ. Matem., Mekhan., No. 1, 12–16 (1967).

    MathSciNet  Google Scholar 

  4. L. D. Akulenko and V. M. Volosov, “High-order resonance rotations,” Vestn. Mosk. Univ. Matem., Mekhan., No. 2, 10–14 (1967).

    MathSciNet  Google Scholar 

  5. V. M. Alekseev, “On a problem with a small paramter,” Vestn. Mosk.Univ. Matem., Mekhan., No. 4, 17–27 (1962).

    Google Scholar 

  6. A. G. Alenitsyn, “Rayleigh waves in an inhomogeneous elastic layer,” Prikl. Matem, i Mekhan., 28(5):880–888 (1964).

    MathSciNet  Google Scholar 

  7. D. V. Anosov, “Limiting cycles of systems of differential equations vith a small parameter attached to the leading derivatives,” Matem. Sborrik, 50(3):299–334 (1960).

    MathSciNet  Google Scholar 

  8. D. V. Anosov, “Averaging for systems of ordinary differential equations-with rapidly oscillating solutions,” Izv. Akad. Nauk SSSR, Ser. Matem., 24(5):721–742 (1960).

    MathSciNet  MATH  Google Scholar 

  9. G. A. Antosevich, “Continuous dependence on a parameter and the method of averaging,” International Union on Theoret. and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR, Kiev (1961).

    Google Scholar 

  10. V. I. Arnol’d, “The conditions for applicability and the error estimates for the averaging method in the case of systems that pass through a resonance in the course of revolution,” Dokl. Akad. Nauk SSSR, 161(1):9–12 (1965).

    MathSciNet  Google Scholar 

  11. N. Kh. Bagirova, “The dependence of the solutions of classical variational problems on a small parameter,” Dokl. Akad. Nauk Azerbaidzhaisk. SSR, 21(3):9–14(1965).

    MathSciNet  MATH  Google Scholar 

  12. N. Kh. Bagirova, “The dependence of the solution of variational problems on a small parameter,”Vestn. Mosk. Univ. Matem., Mekhan., No.1, 33–42 (1966).

    Google Scholar 

  13. N. Kh. Bagirova, “The dependence of the solution of the isoperimetric variational problem on a small parameter,” Uch. Zap. Azerbaidzhansk. Univ., Ser. Fiz.-Matem. Nauk, No. 1, 19–30 (1965).

    MathSciNet  Google Scholar 

  14. Yu. N. Bakaev and P. I. Kuznetsov, “On the calculation of start-up transients in electric drives with a constant-current motor,” Élektrichestvo, No. 3, 47–50 (1959).

    Google Scholar 

  15. M. A. Barnovska, “The asymptotic representation of the spectral matrix of a fourth-order differential operator,” Dokl. Akad. Nauk SSSR, 162(6):1223–1225 (1965).

    MathSciNet  Google Scholar 

  16. M. A. Barnovska, “The asymptotic representation of the spectral matrix of a fourth-order differential operator,” Mat.-Fyz. Casop., 16(2):105–127 (1966).

    MathSciNet  MATH  Google Scholar 

  17. V.N. Belobrov, “The behavior of the solutions of one class of homogeneous linear integro-differential equations with a small parameter attached to the leading derivatives,” in: Proceedings of the Twelfth Scientific Conference of Professional Teachers on the Staff of the Phys.-Math. Faculty of Kirgiz Univ., Mathematics Section, Frunze (1964), pp. 32–38.

    Google Scholar 

  18. Yu. S. Bogdanov, “Asymptotic properties of the solutions of linear differential systems,” in: Transactions of the Fourth All-Union Mathematics Congress, 1961, Vol. 2, “Nauka,” Leningrad (1964), pp. 424–432.

    Google Scholar 

  19. N.N. Bogolyubov, Statistical Methods in Mathematical Physics, Izd. Akad. Nauk Ukrainsk. SSR (1945).

    Google Scholar 

  20. N. N. Bogolyubov and D. N. Zubarev, “The asymptotic-approximation method for systems with rapidly varying phase and its application to the calculation of the motion of charged particles in a magnetic field,” Ukrainsk. Matem. Zh., 7(1):5–17 (1955).

    MathSciNet  MATH  Google Scholar 

  21. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlineai Oscillations, Fizmatgiz (1963).

    Google Scholar 

  22. N.N. Bogolyubov and Yu. A. Mitropol’skii, “The method of integral manifolds in nonlinear mechanics,” International Union on Theoret. and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR, Kiev (1961), 126 pp.

    Google Scholar 

  23. N. N. Bogolyubov and Yu. A. Mitropol’skii, “Analytic methods in the theory of nonlinear oscillations,” Transactions of the All-Union Congress on Theoretical and Applied Mechanics, 1960, Izd. Akad. Nauk SSSR, Moscow (1962), pp. 25–35.

    Google Scholar 

  24. S. Yu. Borisova, “The asymptotic representation of solutions of the Cauchy problem for integro-differential equations with a small parameter attached to the leading derivatives in the case of a nonregular kernel,” Ukrainsk. Matem. Zh., 17(2):19–28 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu. G. Borisovich, “Periodic solutions of operator-differential equations with a small parameter attached to the derivative,” Dokl. Akad. Nauk SSSR, 148(2):255–258(1963).

    MathSciNet  Google Scholar 

  26. L. M. Brekhovskii, Waves in a Stratified Medium, Izd. Akad. Nauk SSSR (1957).

    Google Scholar 

  27. N. I. Brish, “Bouadary problems for the equation εy″ = f(x, y, y’) for small ε,” Dokl. Akad. Nauk SSSR, 95(3):429–432 (1954).

    Google Scholar 

  28. V. S. Buslaev and L. D. Faddeev, “Trace formulas for the singular Sturm-Liouville differential operator,” Dokl. Akad. Nauk SSR, 132(1):13–16 (1960).

    MathSciNet  Google Scholar 

  29. V. F. Butuzov, “The asymptotic behavior of the solution of integro-differential equations with a small parameter attached to the derivative,” Differents. Uravneniya, 2(3):391–406 (1966).

    MathSciNet  Google Scholar 

  30. Ya. V. Bykov, “Bounded solutions of one class of integro-differential equations,” in: Research into Integro-differential Equations in Kiriz No. 2, Izd. Akad. Nauk Kirgizsk SSR, Frunze (1962), pp. 79–89.

    Google Scholar 

  31. Ya. V. Bykov and M. Imanaliev, “Periodic solutions of integro-differential equations,” in: Research into Integro-differential Equations in Kirgiz, No. 1. Akad. Nauk Kirgizsk. SSR, Runze (1961). pp. 141–158.

    Google Scholar 

  32. Ya. V. Bykov and M. Imanaliev, “Periodic, almost periodic, and bounded solutions of one class of integro-differential equations containing a small parameter,” in: Research in Integro-differential Equations in Kirgiz, No. 2, Akad. Nauk Kirgizsk. SSR, Frunze (1962), pp. 3–20.

    Google Scholar 

  33. B. F. Bylov, R. É. Vinograd, D. M. Grobman, and V. V. Nemytskii, The Theory of the Lyapunov Criterion and Its Application to Stability Problems, “Nauka,” Moscow (1966), 576 pp.

    Google Scholar 

  34. W. Wasow, “Singular periodic perturbations of ordinary differential equations,” International Union on Theoret. and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR, Kiev (1961), 19 pp.

    Google Scholar 

  35. A.B. Vasil’eva, “On the differentiation of solutions of differential equations containing a small parameter,” Dokl. Akad. Nauk SSSR, 61(4):597–599 (1948).

    MathSciNet  MATH  Google Scholar 

  36. A. B. Vasil’eva, “Differential equations containing a small parameter,” Matem. Sbornik, Vol. 31(73), No. 3, 587–644 (1952).

    MathSciNet  Google Scholar 

  37. A. B. Vasil’eva, “Asymptotic formulas for the solution of systems of ordinary differential equations containing parameters of various orders of smallness,” Dokl.Akad. Nauk SSSR, 128(6):1110–1113 (1959).

    MathSciNet  MATH  Google Scholar 

  38. A. B. Vasil’eva, “Uniform approximations to the solution of a system of differential equations containing a small parameter and their application to boundary value problems,” Dokl. Akad. Nauk SSSR, 124(3):509–512 (1959).

    MathSciNet  MATH  Google Scholar 

  39. A. B. Vasil’eva, “On the repeated differential with respect to the parameter of the solutions of systems of ordinary differential equations containing a small parameter,” Matem. Sbornik, 48(3):311–334 (1959).

    MathSciNet  Google Scholar 

  40. A. B. Vasil’eva, “The construction of a uniform approximation for the solution of a system of differential equations containing a small parameter,” Matem. Sbornik, 50(1):43–58 (1960).

    MathSciNet  Google Scholar 

  41. A.B. Vasil’eva, “The asymptotic behavior of solutions of some boundary value problems for equations containing a small parameter,” Dokl. Akad. Nauk SSSR, 135(6):1303–1306 (1960).

    Google Scholar 

  42. A. B. Vasil’eva, “Asymptotic formulas for the solution of ordinary differential equations containing a small parameter over a semi-infinite interval,” Dokl. Akad. Nauk SSSR, 142(4):769–772 (1962).

    MathSciNet  Google Scholar 

  43. A. B. Vasil’eva, “Equation of neutral type with a small retardation,” Dokl. Akad. Nauk SSSR, 145(3):495–497 (1962).

    MathSciNet  Google Scholar 

  44. A. B. Vasil’eva, “The asymptotic behavior of the solutions of differential-difference equations in the case of a small deviation of the argument,” Zh.Vychisl. Matem, i Matem.-Fiz., 2(5):768–786(1962).

    MathSciNet  Google Scholar 

  45. A. B. Vasil’eva, “The asymptotic behavior of the solutions of some problems for nonlinear ordinary differential equations with a small parameter attached to the highest derivative,” Usp. Matem. Nauk, 18(3):15–86 (1963).

    MathSciNet  Google Scholar 

  46. A.B. Vasil’eva, “Asymptotic methods in the theory of ordinary differential equations containing a small parameter attached to the highest derivatives,” Zh. Vychisl. Matem, i Matem. Fiz., 3(4):611–642 (1963).

    MathSciNet  Google Scholar 

  47. A.B. Vasil’eva, “Integral perturbations in differential equations with rapidly oscillating solutions,” Differents. Uravneniya, 1(6):717–730 (1965).

    MathSciNet  MATH  Google Scholar 

  48. A. B. Vasil’eva, “On the problem of the asymptotic behavior of the solutions of equations of neutral type with a small retardation,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 4, Patrice Lumumba University (1967), pp. 154–163.

    Google Scholar 

  49. A. B. Vasil’eva, “On the correspondence between the properties of the solutions of linear difference equations and systems of ordinary differential equations,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 5, Patrice Lumumba University (1967), pp. 21–44.

    Google Scholar 

  50. A. B. Vasil’eva and N. Kh. Bagirova, “The asymptotic behavior of the solution of differential equations containing a small parameter attached to the highest derivatives determined by various supplementary conditions,” Uchenye Zapiski Azerbaidzhan, Univ. Ser. Fiz.-Matem, i Khim. Nauk, No. 4, 3–17 (1962).

    MathSciNet  Google Scholar 

  51. A. B. Vasil’eva and V. F. Butuzov, “The asymptotic behavior of the solution of integro -differential equations containing a small parameter attached to the derivative,” in: Numerical Methods for the Solution of Differential and Integro-differential Equations and Quadrature Formulas, “Nauka,” Moscow (1964), pp. 183–191.

    Google Scholar 

  52. A.B. Vasil’eva and V. F. Butuzov, “Some eigenvalue problems for inte gro -differential equations containing a small parameter attached to the highest derivative,” Differents. Uravneniya, No. 9, 1190–1203 (1965).

    MathSciNet  Google Scholar 

  53. A. B. Vasil’eva and V. M. Volosov, “Concerning the work of A. N. Tikhonov and his students on ordinary differential equations containing a small parameter,” Usp. Matem. Nauk, 22(2):149–168 (1967).

    MathSciNet  Google Scholar 

  54. A.B. Vasil’eva and A.B. Zirrin, “The asymptotic behavior of the solutions of some classes of differential equations containing a small parameter attached to the highest derivative,” Vestnik Mosk. Univ. Matem., Mekhan., No. 4, 21–29(1964).

    Google Scholar 

  55. A. B. Vasil’eva and M. Imanaliev, “The asymptotic behavior of the solution of the Cauchy problem for integr o-differential equations containing a small parameter attached to the derivative,” Sibirsk. Matem. Zh., 7(1):61–69 (1965).

    MathSciNet  Google Scholar 

  56. A.B. Vasil’eva and A.M. Rodionov, “Application of the perturbation method to equations with a retarded argument in the case of small retardation,” in: Transactions of the Seminar or. the Theory of Differential Equations with a Deviating Argument, Vol. 1, Patrice Lumumba University (1962), pp. 20–27.

    Google Scholar 

  57. A.B. Vasil’eva and Yu. S. Sayasov, “The basis and conditions of applicability of the Semen ov —Bodenstein method of quasi-stationary concentrations,” Zh. Fiz. Khim., 29(5):802–810 (1955).

    Google Scholar 

  58. A.B. Vasil’eva and Yu. S. Sayasov, “The theory of the quenching of electron processes in jets of low-temperature plasma,” Zh. Prikl. Mekhan. i Tekhn. Fiz., No. 1, 26–34 (1968).

    Google Scholar 

  59. A.B. Vasireva and V. A. Tupchiev, “Asymptotic formulas for the solution of boundary value problems for second-order equations containing a small parameter attached to the highest derivative,” Dokl. Akad. Nauk SSSR, 135(5):1035–1037(1960).

    Google Scholar 

  60. A. B. Vasil’eva and V. A. Tupchiev, “Periodic solutions of systems of differential equations containing a small parameter attached to the derivatives,” Dokl. Akad. Nauk SSSR, 178(4) (1968).

    Google Scholar 

  61. N. P. Vekua, “Linear integro-differential equations containing a small parameter attached to the highest derivatives,” in: Topics in the Mechanics of Continuous Media, Akad. Nauk SSSR, Moscow (1961), pp. 92–100.

    Google Scholar 

  62. N. P. Vekua, “On a differential boundary value problem of linear coupling containing a small parameter,” Soobshch. Akad. Nauk Gruzinsk. SSR, 36(2):257–260(1964).

    MathSciNet  MATH  Google Scholar 

  63. N. P. Vekua, “One system of nonlinear differential equations containing a small parameter,” Trudy Tbilissk. Univ., Vol. 110, 25–32 (1965).

    MathSciNet  Google Scholar 

  64. A. P. Velikii, “The asymptotic behavior of the generalized solutions of differential-difference equations containing a small parameter attached to the highest derivatives,” Dopovidi Akad. Nauk Ukrainsk. RSR, No. 11, 1419–1423 (1964).

    MathSciNet  Google Scholar 

  65. M. I. Vishik and L. A. Lyusternik, “Regular degeneracy and the boundary layer for linear differential equations containing a small parameter,” Usp. Matem. Nauk, 12(5):3–122 (1957).

    MathSciNet  MATH  Google Scholar 

  66. M. I. Vishik and L. A. Lyusternik, “The asymptotic behavior of the solutions of boundary value problems for quasi-linear differential equations,” Dokl. Akad. Nauk SSSR, 121(5):778–781 (1958).

    MathSciNet  MATH  Google Scholar 

  67. M. I. Vishik and L. A. Lyusternik, “The solution of some perturbation problems in the case of matrices and self-adjoint and non-self-adjoint differential equations. 1,” Usp. Matem. Nauk, 15(3):3–80 (1930).

    MathSciNet  Google Scholar 

  68. M. I. Vishik and L. A. Lyusternik, “On the initial jump for nonlinear differential equations containing a small parameter,” Dokl. Akad. Nauk SSSR, 132(6):1242–1245(1960).

    Google Scholar 

  69. I. M. Volk, “Periodic solutions of nonautonomous systems depending on a small parameter,” Prikl. Matem, i Mekhan., 10(5–6):559–574 (1946).

    MathSciNet  MATH  Google Scholar 

  70. I. M. Volk, “Some generalizations of the small-parameter method in the theory of periodic motions of nonautonomous systems,” Prikl. Matem, i Mekhan., 11(4):433–444 (1947).

    MathSciNet  MATH  Google Scholar 

  71. I. M. Volk, “Periodic solutions of autonomous systems,” Prikl. Matem, i Mekhan., 12(1):29–38 (1948).

    MathSciNet  MATH  Google Scholar 

  72. V. M. Volosov, “Nonlinear second-order differential equations containing a small parameter attached to the highest derivative,” Matem. Sbornik, Vol. 30(72), pp. 245–270 (1952).

    MathSciNet  Google Scholar 

  73. V. M. Volosov, “On the theory of high-order nonlinear differential equations containing a small parameter attached to the highest derivative,” Matem. Sbornik, Vol. 31(73), No. 3, 645–674 (1952).

    MathSciNet  Google Scholar 

  74. V. M. Volosov, “Averaging in systems of ordinary differential equations,” Usp. Matem. Nauk, 17(6):3–126 (1962).

    MathSciNet  Google Scholar 

  75. V.M. Volosov, “Some forms of calculations in the theory of nonlinear oscillations concerned with averaging,” Zh. Vychisl. Matem, i Matem. Fiz., 3(1):3–53 (1963).

    MathSciNet  MATH  Google Scholar 

  76. V. M. Volosov, G. N. Medvedev and B. I. Morgunov, “The application of the averaging method to some systems of differential equations with a deviating argument,” Vestn. Mosk. Univ. Fiz., Astron., No. 6, 89–91 (1965).

    MathSciNet  Google Scholar 

  77. V. M. Volosov, N.N. Moiseev, B.I. Morgunov, and F. L. Chernous’ko, “Asymptotic methods of nonlinear mechanics associated with averaging,” in: Transactions of the Second All-Union Congress on Theoretical and Applied Mechanics, 1964, Summary of Reports, Vol. 2, “Nauka,” Moscow (1965), pp. 35–50.

    Google Scholar 

  78. V. M. Volosov and B.I. Morgunov, “The asymptotic behavior of some rotational motions,” Dokl. Akad. Nauk SSSR, 151(6):1260–1263 (1963).

    MathSciNet  Google Scholar 

  79. V.M. Volosov and B.I. Morgunov, “Stationary resonance states of some oscillatory systems,” Dokl. Akad. Nauk SSSR, 156(1):50–53 (1964).

    Google Scholar 

  80. V. M. Volosov and B.I. Morgunov, “The calculation of stationary resonant oscillatory states of some non-Hamiltonian systems,” Vestn. Mosk. Univ. Fiz., Astron., No. 4, 86–89 (1965).

    Google Scholar 

  81. V. M. Volosov and B. I. Morgunov, “The calculation of oscillatory states of non-Hamiltonian systems,” Dokl. Akad. Nauk SSSR, 161(5):1048–1050 (1965).

    MathSciNet  Google Scholar 

  82. V. M. Volosov and B. I. Morgunov, “The asymptotic calculation of some rotational motions in the case of resonance,” Dokl. Akad. Nauk SSSR, 161(6):1303–1305(1965).

    MathSciNet  Google Scholar 

  83. V.M. Volosov and B.I. Morgunov, “Some stability conditions associated with the study of resonances,” Dokl. Akad. Nauk SSSR, 170(2):239–241 (1966).

    MathSciNet  Google Scholar 

  84. R. Gabasov, “One problem in the realization of programmed motion,” Trudy Ural’skogo Politekhn. Inst., No. 139, 86–95 (1964).

    MathSciNet  Google Scholar 

  85. R. Gabasov, “The stability of differential-difference equations containing a small parameter attached to the derivatives,” Trudy Ural’skogo Politekhn. Inst., No. 139, 36–41 (1964).

    MathSciNet  Google Scholar 

  86. M. G. Gasymov, “The analytic properties of the spectral function of the self-adjoint Sturm-Liouville operator,” Dokl. Akad. Nauk SSSR, 150(5):971–984 (1963).

    MathSciNet  Google Scholar 

  87. M. G. Gasymov, “The sum of the differences of the eigenvalues of two self-adjoint operators,” Dokl. Akad. Nauk SSSR, 150(6):1202–1205 (1963).

    MathSciNet  Google Scholar 

  88. M. G. Gasymov and B. M. Levitan, “The sum of the differences of the eigenvalues of two singular Sturm-Liouville operators, ” Dokl. Akad. Nauk SSSR, 151(5):1014–1017 (1963).

    MathSciNet  Google Scholar 

  89. M. G. Gasymov and B. M. Levitan, “The determination of the Dirac system by means of the scattering phase,” Dokl. Akad. Nauk SSSR, 167(6): 1219–1222 (1966).

    MathSciNet  Google Scholar 

  90. V. A. Ginzburg, The Propagation of Electromagnetic Waves in a Plasma, Fiz-matgiz, Moscow (1960).

    Google Scholar 

  91. V. B. Glasko, “Some eigenvalue problems involving a small parameter,” Dokl. Akad. Nauk SSSR, 108(5):167–769 (1956).

    MathSciNet  Google Scholar 

  92. I. S. Gradshtein, “The behavior of the solutions of a system of linear differential equations with constant coefficients which degenerate in the limit,” Izv. Akad. Nauk SSSR, Ser. Matem., 13(3):253–280 (1949).

    Google Scholar 

  93. I. S. Gradshtein, “Differential equations containing a small parameter attached to the derivatives and the Lyapunov theory of stability,” Dokl. Akad. Nauk SSSR, 65(6):789–792 (1949).

    Google Scholar 

  94. I. S. Gradshtein, “Linear equations with variable coefficients and small parameters attached to the highest derivatives,” Matem. Sbornik, Vol. 27(69), No. 1, 47–68(1950).

    Google Scholar 

  95. I. S. Gradshtein, “Differential equations in which the coefficients of the derivatives contain various powers of a small parameter,” Dokl. Akad. Nauk SSSR, 82(1):5–8 (1952).

    Google Scholar 

  96. I. S. Gradshtein, “The application of A. M. Lyapunov’s theory of stability in the theory of differential equations containing a small parameter attachée to the derivatives,” Matem. Sbornik, Vol. 32(74), No. 2, 263–286 (1953).

    Google Scholar 

  97. I. S. Gradshtein, “The solution of differential equations containing a small parameter attached to the derivatives on the time half-axis,” Matem. Sbornik, Vol. 32(74), No. 3, 533–544 (1953).

    Google Scholar 

  98. E. A. Grebenikov, “Some aspects of the validity of averaging schemes in problems of celestial mechanics,” Byulleten Inst. Teoret. Astron. Akad. Nauk SSSR, 11(5):128 (1967).

    Google Scholar 

  99. L. A. Groza, “Asymptotic expansions of the solutions of second-order ordinary differential equations in Banach spaces,” Dokl. Akad. Nauk SSSR, 121(6):963–966 (1958).

    MathSciNet  MATH  Google Scholar 

  100. L. A. Groza, “The asymptotic behavior of the solutions of a linear second-order differential equation in Banach space when the small parameter attached to the first and second derivatives tends to zero,” Dokl. Akad. Nauk SSSR, No. 6, 1227–1230 (1962).

    MathSciNet  Google Scholar 

  101. A. M. Guseinbekova, “The asymptotic expansions of eigenfunctions and eigenvalues in problems with a potential well,” Izv. Akad. Nauk Azerbaidzhansk. SSR, Ser. Fiz.-Matem. i Tekhn. Nauk, No. 6, 49–67 (1960);

    MathSciNet  Google Scholar 

  102. A. M. Guseinbekova, “The asymptotic expansions of the eigenfunctions and eigenvalues of a self-adjoint second-order differential operator with continuously large coefficients,” Izv. Akad. Nauk Azerbaidzhansk. SSR, Ser. Fiz.-Matem. i Tekhn. Nauk, No. 2, 13–25 (1961).

    MathSciNet  Google Scholar 

  103. M. G. Dzhavadov, “The m-tuple completeness of one half of the eigenfunctions and associated functions of an ordinary differential equation of order 2m,” Dokl. Akad. Nauk SSSR, 160(4):754–757 (1965).

    MathSciNet  Google Scholar 

  104. L. A. Dikii, “The trace formulas for Sturm-Liouville differential operators,” Usp. Matem. Nauk, 13(3):111–143 (1958).

    MathSciNet  Google Scholar 

  105. L. A. Dikii, “Boundary conditions that depend on the eigenvalue,” Usp. Matem. Nauk, 15(1):195–198 (1960).

    MathSciNet  Google Scholar 

  106. Yu. N. Dnestrovskii and D. P. Kostomarov, “The asymptotic behavior of eigenvalues in the case of non-self-adjoint boundary value problems,” Zh. Vychisl. Matem, i Matem. Fiz., 4(2):267–277 (1964).

    MathSciNet  Google Scholar 

  107. A.A. Dorodnitsyn, “The asymptotic solution of the van der Pol equation,” Prikl. Matem, i Mekhan., Vol. 11, 313–328 (1947).

    Google Scholar 

  108. A.A. Dorodnitsyn, “Asymptotic distribution laws for the eigenvalues of some special forms of second-order differential equations,” Usp. Matem. Nauk, 7(6):3–96 (1952).

    Google Scholar 

  109. M. A. Evgrafov and M. V. Fedoryuk, “The asymptotic behavior of the solutions of the equation w″(z) - p(z, λ)w(z) = 0 as λ → ∞ in the complex plane z,” Usp. Matem. Nauk, 21(1):3–50 (1966).

    MATH  Google Scholar 

  110. N. P. Erugin, Linear Systems of Ordinary Differential Equations with Periodic and Quasi-Periodic Coefficients, Akad. Nauk Belorussk. SSR, Minsk, 272 pp.

    Google Scholar 

  111. O. A. Zhautykov, “The principle of averaging in nonlinear mechanics as applied to systems of equations,” Ukrainsk. Matem. Zh., 17(1):39–46 (1965).

    Article  Google Scholar 

  112. V. F. Zhdanovich, “The asymptotic expansion of the eigenvalues of a boundary value problem involving a parameter,” Dokl. Akad. Nauk SSSR, 135(6):1318–1321(1960).

    Google Scholar 

  113. V. F. Zhdanovich, “Non-self-adjoint differential operators with irregular boundary conditions in vector-function space,” in: Functional Analysis and Its applications, Akad. Nauk Azerbaidzhansk. SSR, Baku (1961), pp. 58–64.

    Google Scholar 

  114. N. A. Zheleztsov, “On the theory of relaxation oscillations in second-order systems,” Radiofizika, No. 1, 67–78 (1958).

    Google Scholar 

  115. K. D. Zhulamanov and V. Kh. Kharasakhal, “The periodic solutions of differential equations containing a small parameter,” Izv. Akad. Nauk Kazakhsk. SSR, Ser. Fiz.-Matem., No. 3, 71–75 (1966).

    Google Scholar 

  116. K.V. Zadiraka, “Systems of nonlinear differential equations containing a small parameter attached to some derivatives,” Dokl. Akad. Nauk SSSR, 109(2):256–259(1956).

    MathSciNet  MATH  Google Scholar 

  117. K.V. Zadiraka, “The investigation of singularly perturbed systems in the neighborhood of a family of closed orbits,” Dokl. Akad. Nauk SSSR, 144(2):264–267(1962).

    MathSciNet  Google Scholar 

  118. K. V. Zadiraka, “The investigation of a singularly perturbed autonomous system in the neighborhood of a torus,” Dokl. Akad. Nauk SSSR, 145(3):507–509(1962).

    MathSciNet  Google Scholar 

  119. K.V. Zadiraka, “The behavior of singularly perturbed autonomous nonlinear differential systems in the neighborhood of a family of cylinders,” Ukrainsk. Matem. Zh., 14(3):235–249 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  120. K.V. Zadiraka, “The nonlocal integral manifold of irregularly perturbed differential system,” Ukrainsk. Matem. Zh., 17(1):47–63 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  121. G.M. Zaslavskii, S.S. Moiseev, and R. Z. Sagdeev, “The asymptotic method for the solution of a fourth-order differential equation containing two small parameters in the hydrodynamic theory of stability,” Dokl. Akad. Nauk SSSR, 153(6):1295–1298(1964).

    Google Scholar 

  122. G.M. Zaslavskii and A. M. Fridman, “The motion of a quasi-classical particle in a quasi-periodic potential,” Dokl. Akad. Nauk SSSR, 166(3):580–583 (1966).

    Google Scholar 

  123. N. A. Ivanova, “The asymptotic behavior of the Green functions of a linear ordinary differential equation with variable coefficients depending on a small parameter,” Dokl. Akad. Nauk SSSR, 140(1):29–32 (1961).

    MathSciNet  Google Scholar 

  124. M. I. Imanaliev, “The periodic solutions of integro-differential equations containing a small parameter,” in: Research in Integro-differential Equations in Kirgiz, No. 1, Akad. Nauk Kirgizk. SSR, Frunze (1961), pp. 139–144.

    Google Scholar 

  125. M.I. Imanaliev, “The behavior of solutions of systems of integro-differential equations containing a small parameter attached to the derivatives,” in: Research in Integro-differential Equations in Kirgiz, No. 2, Akad. Nauk Kir-gizk. SSR, Frunze (1962), pp. 21–39.

    Google Scholar 

  126. M. I. Imanaliev, “Asymptotic estimates for the solutions of the Cauchy problem in the case of integro-differential equations containing a small parameter attached to the derivative,” Transactions of the Third (1964) Siberian Conference on Mathematics and Mechanics, Tomskii Univ., Tomsk (1964), pp. 106–108.

    Google Scholar 

  127. M. I. Imanaliev, “Asymptotic estimates for the bounded and almost periodic solutions of singularly perturbed systems of differential equations,” in: Transactions of the Third (1964) Siberian Conference on Mathematics and Mechanics, Tomskii Univ., Tomsk (1964), pp. 108–109.

    Google Scholar 

  128. M. I. Imanaliev, V.N. Belobrov, and O. Tukeshev, “The asymptotic behavior on the semi-axis of the solutions of nonlinear systems of integro-differential equations containing a small parameter attached to one of the derivatives,” in: Proceedings of the Thirteenth Scientific Conference of Professional Teachers on the Staff of the Phys.-Math. Faculty of Kirgiz Univ., Mathematics Section, Frunze (1965), pp. 38–40.

    Google Scholar 

  129. K. Kakishov and K. O. Éshenkulov, “Loaded nonlinear integro-differential equations with persistence,” in: Proceedings of the First Inter-University Science and Theory Conference of Science Teachers, Research Workers, and Students of the Universities of Kirgiz SSR Dedicated to the Fortieth Anniversary of the Formation of the Kirgiz SSR and of the Communist Party of the Kirgiz SSR, Mektep, Frunze (1966), p. 147.

    Google Scholar 

  130. K. K. Kapishev, “Quasi-periodic solutions of nonlinear systems of differential equations containing a small parameter,” Vestn. Akad. Nauk Kazakhsk. SSR, No. 6, 42–47 (1966).

    Google Scholar 

  131. K. K. Kapishev and V. Kh. Kharasakhal, “Almost periodic solutions of differential equations containing a small parameter attached to the derivatives,” in: Transactions of the First (1963) Kazakh Inter-University Scientific Conference on Mathematics and Mechanics Held at Alma-Ata, “Nauka” (1965), p. 277.

    Google Scholar 

  132. L. Caprioli, “A triode oscillator described by a tMrd-order differential equation,” International Union for Theoretical and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR (1961), 14 pp.

    Google Scholar 

  133. T. M. Karaseva, “The rate of growth and boundedness of solutions of differential equations with periodic coefficients,” Izv, Akad. Nauk SSSR, Ser. Matem., 29(1):41–70 (1965).

    MathSciNet  MATH  Google Scholar 

  134. K. A. Kasymov, “The asymptotic behavior of solutions of the Cauchy problem with large initial conditions for nonlinear ordinary differential equations containing a small parameter,” Usp. Matem. Nauk, 17(5):187–188 (1962).

    Google Scholar 

  135. K. A. Kasymov, “The asymptoticbehaviorof the solutions of the Cauchy problem with an initial discontinuity for systems of differential equations containing a small parameter attached to the derivatives,” in: The Equations of Mathematical Physics and Functional Analysis, “Nauka,” Alma-Ata (1966), pp. 16–24.

    Google Scholar 

  136. K.I. Kvantaliani, “Integro-differential equations of the Volterra type containing small parameters attached to the highest derivatives,” Soobshch. Akad. Nauk Gruzinsk. SSR, No. 3, 265–272 (1961).

    MathSciNet  Google Scholar 

  137. K. I. Kvantaliani, “Boundary value problems for integr o-differential equations containing a small parameter,” Soobshch. Akad. Nauk Gruzinsk. SSR, 30(5): 545–552 (1963).

    MathSciNet  MATH  Google Scholar 

  138. K. I. Kvantaliani, “Some problems for singular integro-differential equations containing a small parameter” Soobshch. Akad. Nauk Gruzinsk. SSR, 39(3):519–525 (1965).

    MathSciNet  MATH  Google Scholar 

  139. P. Ya. Kirik, “The asymptotic solution of a system of linear differential equations,” in: Collected Scientific Transactions of the Krivorozhye Mining Institute, No. 1 (1961), pp. 400–406.

    Google Scholar 

  140. A.I. Klimushev, “The dependence of the solutions of systems of difference equations on a small parameter attached to the first difference,” Trudy Ural’skogo Polytekhn. Inst., No. 113, 45–55 (1961).

    Google Scholar 

  141. A. I. Klimushev, “The dependence of the solutions of a system of differential equations with lag on a small parameter attached to the derivatives,” Trudy Ural’skogo Politekhn. Inst., No. 139, 5–11 (1964).

    Google Scholar 

  142. A.I. Klimushev, “The stability of a system of difference equations containing small parameters attached to the first differences,” Trudy Ural’skogo Politekhn. Inst., No. 139, 42–49 (1964).

    Google Scholar 

  143. A.I. Klimushev and N.N. Krasovskii, “Uniform asymptotic stability of systems of differential equations containing a small parameter attached to the derivatives,” Prikl. Matem, i Mekhan., Vol. 25, 680–690 (1961).

    Google Scholar 

  144. P. I. Koval’. “The asymptotic behavior of the solutions of almost triangular systems of linear difference and differential equations,” Dokl. Akad. Nauk SSSR, 124(6):1203–1206 (1959).

    MathSciNet  Google Scholar 

  145. E. A. Coddington and N. Levinson, The Theory of Ordinary Differential Equations [Russian translation], IL, Moscow (1956) [English edition: McGraw-Hill, New York].

    Google Scholar 

  146. P. V. Kokotovich and R. S. Rutman, “The sensitivity of automatic control systems,” Avtomatika i Telemekhanika, 26(4):730–745 (1965).

    Google Scholar 

  147. V. O. Kononenko, Oscillatory Systems with Bounded Perturbations, “Nauka,” Moscow (1964).

    Google Scholar 

  148. V. S. Korolyuk, “The asymptotic behavior of the solutions of difference equations containing a small parameter,” Ukrainsk. Matem. Zh., 12(3):342–346 (1960).

    Article  MATH  Google Scholar 

  149. V. S. Korolyuk and É. R. Nitskaya, “Remarks on the algorithm for the construction of the boundary layer,” Usp. Matem. Nauk, 16(5):171–176 (1961).

    MATH  Google Scholar 

  150. O. V. Kostin, “Asymptotic formulas for the solution of linear ordinary differential equations,” Dopovidi Akad. Nauk Ukrainsk. RSR, No. 10, 1293–1297 (1962).

    MathSciNet  Google Scholar 

  151. D. P. Kostomarov, “Boundary value problems involving the determination of eigenvalues and eigenfunctions of ordinary differential equations containing a small parameter attached to the highest derivative,” Dokl. Akad. Nauk SSSR, 115(2):230–233(1957).

    MathSciNet  MATH  Google Scholar 

  152. A. G. Kostyuchenko, “The distribution of the eigenvalues of singular differential operators,” Dokl. Akad. Nauk SSSR, 168(1):21–24 (1966).

    MathSciNet  Google Scholar 

  153. A. G. Kostyuchenko, “The asymptotic behavior of the spectral function of a singular differential operator of order 2n,” Dokl. Akad. Nauk SSSR, 168(2):276–279(1966).

    MathSciNet  Google Scholar 

  154. A. O. Kravitskii, “Expansion in eigenfunctions of a non-self-adjoint boundary value problem,” Dokl. Akad. Nauk SSSR, 170(6):1255–1258 (1966).

    MathSciNet  Google Scholar 

  155. N. M. Krylov and N.N. Bogolyubov, Introduction to Nonlinear Mechanics, Izd. Akad. Nauk Ukrainsk. SSR, Kiev (1937).

    Google Scholar 

  156. A. P. Kubanskaya, “An example of the application of Galerkin’s method to a problem involving a boundary layer,” Trudy Matem. Inst. Akad. Nauk SSSR, Vol. 84, 60–77 (1965).

    Google Scholar 

  157. V. F. Lazutkin, “Expansions in eigenfunctions of a non-self-adjoint operator associated with the Watson transformation,” Vestn. Leningr. Univ., No. 1, 38–50 (1965).

    Google Scholar 

  158. A. Yu. Levin, “The stability of the solutions of second-order equations,” Dokl. Akad. Nauk SSSR, 141(6): 1298–1301 (1961).

    MathSciNet  Google Scholar 

  159. B. M. Levitan, “Some remarks coaceming spectra,” Appendix to: E. G. Titchmarsh, Eigenfunction Expansions [Russian translation], IL, Moscow (1960), pp. 229–236. [English edition: Oxford University Press, New York.]

    Google Scholar 

  160. B. M. Levitan, “The calculation of the regularized trace for the Sturm-Liou\ilie operator,” Usp. Matem. Nauk, 19(1):161–165 (1964).

    MathSciNet  MATH  Google Scholar 

  161. B. M. Levitan and I. S. Sargsyan, “Some aspects of the theory of the Sturm-Liouville equation,” Usp. Matem. Nauk 15(1):3–98 (1960).

    MATH  Google Scholar 

  162. V. B. Lidskii, “Regularized sums of the roots of one class of entire functions,” Funktsional. Analiz i Ego Prilozhsn., 1(2):52–59 (1967).

    MathSciNet  MATH  Google Scholar 

  163. Lin Tsung-ch’ih, “Perturbations in the solutions of second-order differential equations arising from perturbations of the boundary,” Vestn. Mosk. Univ. Matem., Mekhan., No. 6, 17–23 (1964).

    Google Scholar 

  164. Lin Tsung-ch’ih, “The asymptotic behavior of the solution of the Cauchy problem in the case when the limiting equation has a singularity,” Dokl. Akad. Nauk SSSR, 157(36):522–525 (1964).

    MathSciNet  Google Scholar 

  165. Lin Tsung-ch’ih, “The asymptotic behavior of the solutions of linear differential equations in the case of combined perturbations of the boundary and operator,” Usp. Matem. Nauk, 19(5):201–203 (1964).

    Google Scholar 

  166. C. C. Lin (Lin Chia-chiao), The Theory of Hydrodynamic Stability [Russian translation], IL, Moscow (1958).

    Google Scholar 

  167. S.A. Lomov, “The asymptotic behavior of the solutions of second-order ordinary differential equations containing a small parameter and degenerating on the boundary,” Trudy Mosk. Énerg. Inst., No. 42, 9–144 (1962).

    Google Scholar 

  168. S.A. Lomov, “A power boundary layer in problems involving a small parameter,” Dokl. Akad. Nauk SSSR, 148(3):516–519 (1963).

    MathSciNet  Google Scholar 

  169. S.A. Lomov, “The generalization of the Fuchs theorem to nonanalytic cases,” Matem. Sbornik, 65(4):498–511 (1964).

    MathSciNet  Google Scholar 

  170. S.A. Lomov, “A power boundary layer in problems with a singular perturbation,” Izv. Akad. Nauk SSSR, Ser. Matem., 30(3):525–572 (1966).

    MathSciNet  MATH  Google Scholar 

  171. M. I. Lomonosov, “On the equation \(\frac{d}{{dy}}[p(y)\frac{{du}}{{dy}}] + q(y)u = \lambda u\),” Zapiski Matem. Otdela Fiz.-Matem. Khar’kovsk. Univ. i Khar’kovsk. Matem. Obshchestva, Vol. 26, Ser. 4, 267–316 (1960).

    Google Scholar 

  172. O.B. Lykova, “The investigation of the solution of almost-integrable nonlinear systems with the help of the integral-manifold method,” in: Transactions of the 1961 International Symposium on Nonlinear Oscillations, Akad. Nauk Ukrainsk. SSR, Kiev (1963), pp. 315–323.

    Google Scholar 

  173. O.B. Lykova, “The investigation of the solutions of a system of n + m nonlinear differential equations in the neighborhood of the integral manifold,” Ukiainsk. Matem. Zh., 16(1):13–30 (1964).

    MathSciNet  MATH  Google Scholar 

  174. O.B. Lykova, “The behavior of the solutions of a system of n + m differential equations in the neighborhood of the equilibrium configuration,” Dopovidi Akad. Nauk Ukrainsk. RSR, No. 5, 569–573 (1964).

    Google Scholar 

  175. O. B. Lykova, “Quasi-periodic solutions of an almost-canonical system,” Ukiainsk. Matem. Zh., 16(6):752–768 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  176. O.B. Lykova, “The generalization of a theorm of N. N. Bogolyubov to the case of Hilbert spaces,” Ukrainsk. Matem. Zh., 18(5):53–59 (1966).

    MathSciNet  MATH  Google Scholar 

  177. I. S. Lyubchenko, “The application of Newton’s method to the solution of some problems involving nonlinear differential equations containing a small parameter attached to the highest derivatives,” Usp. Matem. Nauk, 19(6): 222–224(1964).

    Google Scholar 

  178. I. S. Lyubchenko, “The sufficient conditions for the existence and uniqueness of tie solution of the boundary value problem in the case of a system of differential equations containing a small parameter attached to the highest derivatives,” Usp. Matem. Nauk, 20(3):247–250 (1965).

    Google Scholar 

  179. I. S. Lyubchenko, “The asymptotic method for the calculation of temperature fields in gas-turbine blades,” Izv. Vysshikh Uchebn. Zavedenii, Aviats. Tekhn., No. 2, 92–102 (1965).

    Google Scholar 

  180. I. S. Lyubchenko and V. A. Tupchiev, “The asymptotic solutions of problems concerning the determination of temperature fields in gas-turbine blades,” Vestn. Mosk. Univ. Matem., Mekhan., No. 1, 52–60 (1965).

    Google Scholar 

  181. G. S. Makaeva, “The asymptotic behavior of solutions of differential equations containing a small parameter, the ‘rapid-motion’ systems of which are Hamiltonian,” Izv. Akad. Nauk SSSR, Ser. Matera., 25(5):685–716 (1961).

    MathSciNet  MATH  Google Scholar 

  182. F. G. Maksudov, “The spectrum of singular non-self-adjoint differential operators cf order 2n,” Dokl. Akad. Nauk SSSR, 153(4):758–761 (1963).

    MathSciNet  Google Scholar 

  183. V. P. Maslov, “The scattering problem in the quasi-classical approximation,” Doki, Akad. Nauk SSSR, 151(2):306–309 (1963).

    Google Scholar 

  184. V. P. Maslov, “Quasi-classical asymptotic behavior of the solution of the Dirac equation,” Usp. Matem. Nauk, 18(4):220–222 (1963).

    Google Scholar 

  185. V. P. Maslov, “The behavior at infinity of the eig&nfunctions of the Schroedinger operator,” Usp. Matem. Nauk, No. 1, 199–201 (1964).

    Google Scholar 

  186. V. P. Maslov, “The asymptotic behavior of the eigenvalues of the Schroedinger operator,” Usp. Matem. Nauk, 20(6):134–138 (1965).

    MATH  Google Scholar 

  187. V. P. Maslov, Perturbation Theory and Asymptotic Methods, Mosk. Univ., Moscow (1965).

    Google Scholar 

  188. G. N. Medvedev, “Higher-order approximations in the averaging method applied to the calculation of some systems of differential equations containing a deviating argument,” Vestn. Mosk. Univ. Fiz., Astron., No. 4, 110–112 (1966).

    Google Scholar 

  189. G. N. Medvedev, “Reviev of reports presented at the International Symposium on Nonlinear Oscillations held in Kiev on September 12–18, 1961,” Usp. Matem. Nauk, 17(2):215–265 (1962).

    Google Scholar 

  190. V. M. Millionshchikov, “The theory of differential equations containing a small parameter attached to the derivatives in linear topological spaces,” Dokl. Akad. Nauk SSSR, 146(5):1021–1024 (1962).

    MathSciNet  MATH  Google Scholar 

  191. Yu. A. Mitropol’skii, Nonstationary Phenomena in Nonlinear Oscillatory Systems, Izd. Akad. Nauk Ukrainsk. SSR (1955).

    Google Scholar 

  192. Yu. A. Mitropol’skii, The Asymptotic Theory of Nonstationary Oscillations, “Nauka,” Moscow (1964).

    Google Scholar 

  193. Yu. A. Mitropol’skii, Lectures on the Averaging Method in Nonlinear Mechanics, Naukova Dumka, Kiev (1966).

    Google Scholar 

  194. Yu. A. Mitropol’skii and O. B. Lykova, “The integral manifold of a nonlinear system in Hubert Space,” Ukrainsk. Matem. Zh., 17(5):43–53 (1965).

    Article  MathSciNet  Google Scholar 

  195. Yu. A. Mitropol’skii and A. M. Samoilenko, “An investigation of the structure of a trajectory on toroidal manifolds,” Dopovidi Akad. Nauk Ukrainsk. RSR, No. 8, 984–986 (1964).

    MathSciNet  Google Scholar 

  196. Yu. A. Mitropol’skii and S. I. Fodchuk, “The asymptotic methods of nonlinear mechanics as applied to nonlinear differential equations with a retarded argument,” Ukrainsk. Matem. Zh., 18(3):65–84 (1966).

    Article  MathSciNet  Google Scholar 

  197. E. F. Mishchenko, “The asymptotic calculation of the periodic solutions of systems of differential equations containing small parameters attached to the derivatives,” Izv. Akad. Nauk SSSR, Ser. Matem., 21(5):627–654 (1957).

    MATH  Google Scholar 

  198. E. F. Mishchenko, “The asymptotic theory of relaxation oscillations described by second-order systems,” Matem. Sbornik, 44(4):457–480 (1958).

    Google Scholar 

  199. E. F. Mishchenko and L. S. Pontryagin, “Almost-disconnected periodic solutions of differential equations,” Dokl. Akad. Nauk SSSR, 102(5):889–891 (1955).

    MathSciNet  MATH  Google Scholar 

  200. E. F. Mishchenko and L. S. Pontryagin, “The derivation of some asymptotic bounds for the solutions of differential equations containing a small parameter attached to the derivatives,” Izv. Akad. Nauk SSSR, Ser. Matem., 23(5) (1959).

    Google Scholar 

  201. N. N. Moiseev, “The asymptotic behavior of rapie rotations,” Zh. Vychisl. Matem, i Matem. Fiz., 3(1):145–158 (1963).

    MathSciNet  MATH  Google Scholar 

  202. N. N. Moiseev, “Asymptotic representations of the solutions of linear differential equations in the case of multiple elementary divisors of the characteristic equation,” Dokl. Akad. Nauk SSSR, 170(4):780–782 (1966).

    MathSciNet  Google Scholar 

  203. A.M. Molchanov, “Uniform asymptotic behavior of linear systems,” Dokl. Akad. Nauk SSSR, 173(3):519–522 (1967).

    MathSciNet  Google Scholar 

  204. B. I. Morgunov, “Asymptotic analysis of some rotational motions,” Vestn. Mosk. Univ. Fiz., Astron., No. 4, 56–65 (1965).

    Google Scholar 

  205. B. I. Morgunov, “The calculation of the rotations of some non-Hamiltonian systems,” Vestn. Mosk. Univ. Fiz., Astron., No. 4, 83–86 (1965).

    Google Scholar 

  206. B. I. Morgunov, “Higher-order approximations in the calculation of the stationary resonance states of some nonlinear systems,” Vestn. Mosk. Univ. Fiz., Astron., No. 5, 38–44 (1965).

    MathSciNet  Google Scholar 

  207. M. A. Naimark, Linear Differential Operators, GTTI, Moscow (1954).

    Google Scholar 

  208. O. A. Oleinik and A.I. Zhizhina, “The boundary value problem for the equation εy″ = F(x, y, y″) for small ε,” Matem. Sbornik, Vol. 31(73), No. 3, 707–717 (1952).

    Google Scholar 

  209. B. S. Pavlov, “The non-self-adjoint Schroedinger operator,” in: Topics in Mathematical Physics, Vol. 1: Spectral Theory and Wave Processes, M. Sh. Birman (ed.), Consultants Bureau, New York (1967).

    Google Scholar 

  210. B.N. Panaioti, “Nonlinear differential equations containing a small parameter in Banach space,” Trudy Inst. Matem, i Mekhan. Akad. Nauk Azerbaidzhansk. SSR, Vol. 2(10):39–48 (1963).

    MathSciNet  Google Scholar 

  211. B.N. Panaioti, “Uniform approximation to the derivative of the solution of the Cauchy problem for a second-order equation in Banach space containing a small parameter,” Izv. Akad.Nauk Azerbaidzhansk. SSR, Ser. Fiz.-Tekhn. i Matem. Nauk, No. 3, 53–64(1964).

    MathSciNet  Google Scholar 

  212. A. A. Plotnikov, “The limiting transition τ → 0 in the case of a system of equations of the neutral type with a small retardation τ,” in: Transactions of the Seminar on the Theory of Differential Equations with a Perturbed Argument, Vol. 5, Patrice Lumumba University (1967), pp. 45–58.

    Google Scholar 

  213. L. S. Pontryagin, “The asymptotic behavior of the solutions of systems of differential equations containing a small parameter attached to the highest derivatives,” Izv. Akad. NaukSSSR, Ser. Matem., 21(5):605–626 (1957).

    MathSciNet  MATH  Google Scholar 

  214. L. S. Pontryagin and L. V. Rodygin, “An approximate solution of a system of ordinary differential equations containing a small parameter attached to the derivatives,” Dokl. Akad. Nauk SSSR, 131(2):255–258 (1960).

    MathSciNet  Google Scholar 

  215. L. S. Pontryagin and L. V. Rodygin, “The periodic solution of a system of ordinary differential equations containing a small parameter attached to the derivatives,” Dokl. Akad. Nauk SSSR, 132(3):537–540 (1960).

    MathSciNet  Google Scholar 

  216. V. S. Pugachev, “The asymptotic representation of the integrals of systems of linear ordinary differential equations containing a parameter,” Matem. Sbornik, Vol. 15(57), No. 1, 13–46 (1944).

    Google Scholar 

  217. S.S. Pul’kin and N. Kh. Rozov, “The asymptotic theory of relaxation oscillations in systems with one degree of freedom. I. The calculation of phase trajectories,” Vestn. Mosk. Univ. Matem., Mekhan., No, 2, 70–82 (1964).

    MathSciNet  Google Scholar 

  218. V. V. Pukhnachev, “On an equation containing two small parameters attached to the derivatives,” Zh.Vychisl. Matem, i Matem. Fiz., No. 1, 178–183 (1966).

    Google Scholar 

  219. Yu. L. Rabinovich and M. M. Khapaev, “Linear equations containing a small parameter attached to the highest derivative in the neighborhood of a regular singularity,” Dokl. Akad. Nauk SSSR, 129(2):268–271 (1959).

    MathSciNet  MATH  Google Scholar 

  220. B. S. Razumikhin, “The stability of systems containing a small factor,” Prikl. Matem, i Mekhan., 21(4):578–580 (1957).

    Google Scholar 

  221. B. S. Razumikhin, “The stability of the solutions of systems of differential equations containing a small parameter attached to the derivatives,” Sibirsk. Matem. Zh., 4(1):206–211 (1963).

    MATH  Google Scholar 

  222. I. M. Rapoport, Some Asymptotic Methods in the Theory of Differential Equations, Izd. Akad. Nauk Ukrainsk. SSR, Kiev (1954), 290 pp.

    Google Scholar 

  223. A.M. Rodionov, “Expansion of solutions of differential equations with retardation in powers of the small retardation,” Prikl. Matem, i Mekhan., 26(5):947–949(1962).

    MathSciNet  Google Scholar 

  224. A. M. Rodionov, “Periodic solutions of nonlinear differential equations with retardation,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 2, Patrice Lumumba University (1963), pp. 200–207.

    Google Scholar 

  225. A. M. Rodionov, “The application of the perturbation method to linear equations with a distributed retardation,” Zh. Vychisl. i Matem, i Matem. Fiz., 4(2):358–363 (1964).

    MathSciNet  Google Scholar 

  226. L. V. Rodygin, “The existence of an invariant torus for systems of ordinary differential equations containing a small parameter,” Izv. Vysshikh Uchebn. Zavedenii, Radiofizika, 3(1): 116–129 (1960).

    Google Scholar 

  227. V.I. Rozhkov, “The asymptotic behavior of the solutions of equations of the neutral type with a small retardation,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 2, Patrice Lumumba University (1963), pp. 208–222.

    Google Scholar 

  228. V.I. Rozhkov, “The asymptotic behavior of the solutions of equations of neutral type with a small retardation,” in: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulas, “Nauka,” Moscow (1964), pp. 161–175.

    Google Scholar 

  229. V. I. Rozhkov, “Asymptotic formulas with respect to a small retardation for the solution of equations of neutral type containing two retardation parameters,” in: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulas, “Nauka,” Moscow (1964), pp. 176–182.

    Google Scholar 

  230. V.I. Rozhkov, “The boundary value problem for an equation of neutral type with a small retardation,” in: Transactions of the Seminar on the Theory of Differential Equations with a Perturbed Argument, Vol. 3, Moscow (1965), pp. 47–56.

    Google Scholar 

  231. V.I. Rozhkov, “The behavior of the solutions of a system of equations of neutral type when the retardation tends to zero,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 3, Moscow (1965), pp. 146–152.

    Google Scholar 

  232. V. I. Rozhkov, “Equations of neutral type with a small retardation on an infinite interval,” in: Transactions of the Seminar on the Theory of Differential Equations with a Perturbed Argument, Vol. 3, Moscow (1965), pp. 186–203.

    Google Scholar 

  233. V.I. Rozhkov, “Equations of neutral type with a variable small retardation,” Differents. Uravneniya, 2(3):407–416 (1966).

    Google Scholar 

  234. N. Kh. Rozov, “The asymptotic calculation of almost-disconnected periodic solutions of systems of second-order differential equations,” Dokl. Akad. Naik SSSR, 145(1):38–40 (1962).

    MathSciNet  Google Scholar 

  235. N. Kh. Rozov, “The asymptotic theory of relaxation oscillations in systems with one degree of freedom. II. Calculation of the period of the limit cycle,” Vestn. Mosk. Univ. Matem., Mekhan., No. 3, 56–65 (1964).

    MathSciNet  Google Scholar 

  236. V. P. Rubanik, “The basis of the application of the averaging method to systems of differential-difference equations,” in: Science Yearbook for 1952, Physicomathematical Faculty of Chernovtsy University, Chernovtsy (1963), pp. 533–535.

    Google Scholar 

  237. V. P. Rubanik, “Resonance phenomena in quasi-linear oscillatory systems with retarded arguments,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 5, 75–86(1962).

    MathSciNet  Google Scholar 

  238. V. P. Rubanik, “The interaction between two nonlinear systems in the presence of small retarded coupling forces,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 2, Patrice Lumumba University (1963), pp. 183–199.

    Google Scholar 

  239. Yu. A. Ryabov, “The application of the small-parameter method for the construction of solutions of differential equations with a retarded argument,” Dokl. Akad. Nauk SSSR, 133(2):288–291 (1960).

    Google Scholar 

  240. Yu..A. Ryabov, “Some asymptotic properties of linear systems with a small retardation in time,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 3 (1965), pp. 153–164.

    Google Scholar 

  241. Yu.A. Ryabov, “Approximate solutions of nonlinear differential equations with a retarded argument,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 3, Moscow (1965), pp.165–185.

    Google Scholar 

  242. Yu. A. Ryabov and V. A. Sadovnichii, “On the trace of the difference of two high-order ordinary differential operators,” Differents. Uravneniya, 2(12):1611–1624(1966).

    Google Scholar 

  243. I. S. Sargsyan, “The asymptotic behavior of the spectral matrix of the one-dimensional Dirac system,” Dokl. Akad. Nauk SSSR, 166(5): 1058–1061 (1966).

    MathSciNet  Google Scholar 

  244. L. A. Sakhnovich, “The spectrum of the anharmonic oscillator,” Izv. Akad. Nauk SSSR, Ser. Matem., 28(6):1345–1362 (1964).

    MATH  Google Scholar 

  245. L. A. Sakhnovich, “The analytic properties of the discrete spectrum of the Schroedinger equation,” Matem. Sbornik, No. 2, 185–204 (1964).

    Google Scholar 

  246. L. A. Sakhnovich, “The spectrum of the radial Schroedinger equation in the neighborhood of the origin,” Matem. Sbornik, 67(2):221–243 (1965).

    Google Scholar 

  247. N. S. Satskaya, “The solution of an implicit first-order differential equation contiining a small parameter,” Matem. Sbornik, 57(4):517–526 (1962).

    Google Scholar 

  248. N. S. Satskaya, “On one differential equation containing a small parameter,” Matem. Sbornik, 60(4):499–505 (1963).

    Google Scholar 

  249. M. I. Serov, “Some properties of-the spectrum of a non-self-adjoint second-ordei differential operator,” Dokl. Akad. Nauk SSSR, 131(1):27–29 (1960).

    Google Scholar 

  250. Y. Sibuya, “The asymptotic representation of the solutions of ordinary differential equations and its applications,” Sugaku, 13(4):236–248 (1962).

    MathSciNet  Google Scholar 

  251. B. Ya. Skachek, “The asymptotic behavior of the negative part of the spectrum of one-dimensional differential operators,” in: Approximate Methods for the Solution of Differential Equations, Akad. M auk Ukrainsk. SSR, Kiev (1963), pp. 96–109.

    Google Scholar 

  252. V. P. Skripaik, “Degenerate systems and a small parameter attached to the highest derivative,” Matem. Sbornik, 65(3):338–356 (1964).

    Google Scholar 

  253. P. E. Sobolevskii, “Second-order equations in Banach space containing a small parameter attached to the highest derivative,” Usp. Matem. Nauk, 19(6):217–219(1964).

    MathSciNet  Google Scholar 

  254. Z.T. Sultanova, “Points of degeneracy in linear systems,” Dokl. Akad. Nauk Azerbaidzhansk. SSR, 22(11):3–7 (1966).

    MathSciNet  MATH  Google Scholar 

  255. Ya. D. Tamarkin, Some General Problems in the Theory of Ordinary Differential Equations, Petrograd (1917).

    Google Scholar 

  256. A.N. Tikhonov, “The dependence of the solutions of differential equations on a small parameter,” Matem. Sbornik, Vol. 22(64), No. 2, 193–204 (1948).

    Google Scholar 

  257. A.N. Tikhonov, “Systems of differential equations containing a parameter,” Matern. Sbornik, Vol. 27(69), pp. 147–156 (1950).

    Google Scholar 

  258. A.N. Tikhonov, “Systems of differential equations containing small parameters attached to the derivatives,” Matem. Sbornik, Vol. 31(73), No. 3, 575–586(1952).

    Google Scholar 

  259. A.N. Tikhonov, A. B. Vasil’eva, and V. M. Volosov, “Differential equations containing a small parameter,” in: Transactions of the 1961 International Conference on Nonlinear Oscillations, Akad. Nauk Ukrainsk. SSR, Kiev (1963), pp. 456–472.

    Google Scholar 

  260. V. A. Tkachenko, “The spectral analysis of the one-dimensional Schroedinger operator with a complex potential,” Dokl. Akad. Nauk SSSR, 155(2):289–291 (1964).

    MathSciNet  Google Scholar 

  261. V. A. Tkachenko, “Conditions for the discreteness of the spectrum of one-term differential operators,” Differents. Uravneniya, 2(5):634–639 (1966).

    MATH  Google Scholar 

  262. P.E. Tovstik, “Normal degeneracy of boundary value problems,” Vestn. Leningr.Univ., No. 19, 124–134 (1963).

    MathSciNet  Google Scholar 

  263. F. Tricomi, Differential Equations [Russian translation], IL, Moscow (1962).

    MATH  Google Scholar 

  264. O. Tukeshov, “Periodic solutions of systems of singularly perturbed equations with delays,” in: Proceedings of the First Inter-university Science and Theory Conference of Science Teachers, Research Workers, and Students of the Universities of the Kirgiz SSR Dedicated to the Fortieth Anniversary of the Formation of the Kirgiz SSR and of the Communist Party of the Kirgiz SSR, Mektep, Frunze (1966), p. 143.

    Google Scholar 

  265. V. A. Tupchiev, “On the existence, uniqueness, and asymptotic behavior of the solution of the boundary value problem for a system of differential equations containing a small parameter attached to the highest derivative,” Dokl. Akad. Nauk SSSR, 142(6): 1261–1264 (1962).

    MathSciNet  Google Scholar 

  266. V. A. Tupchiev, “The asymptotic behavior of the solution of the boundary value problem for a system of first-order differential equations containing a small parameter attached to the derivative,” Dokl. Akad. Nauk SSSR, 143(6):1296–1299(1962).

    MathSciNet  Google Scholar 

  267. V. A. Tupchiev, “On corner solutions of boundary value problems for a system of fint-order equations containing a small parameter attached to the derivative,” Vestn. Mosk. Univ. Matem., Mekhan., No. 3, 17–24 (1963).

    Google Scholar 

  268. V. A. Tupchiev, “On the problem of decomposition of an arbitrary discontinuity in the case of a system of two quasi-linear first-order equations,” Zh. Vychisl. Matem, i Matem. Fiz., No. 5, 817–825 (1964).

    Google Scholar 

  269. Wu Chochun, “The theory of singular perturbations of ordinary differential equations,” Progr. Math., 5(3):224–254 (1962).

    Google Scholar 

  270. L. D. Faddeev, “Properties of the S-matrix of the one-dimensional Schroe-dinger equation,” Trudy Matem. Inst. Akad. Nauk SSSR, 73:314–336 (1964).

    MathSciNet  MATH  Google Scholar 

  271. S.V. Fal’kovich, “The asymptotic expansion of the Chaplyagin function,” Uch. Zap. Saratovsk. Univ., 70:207–210 (1961).

    Google Scholar 

  272. M. V. Fedoryuk, “The asymptotic behavior of the discrete spectrum of the operator w″(x) — λ2p(x)w(x),” Matem. Sbornik, 68(1):81–110 (1965).

    Google Scholar 

  273. M. V. Fedoryuk, “The one-dimensional scattering problem in the quasi-classical approximation, Part 1,” Differents. Uravneniya, 1(5):631–646 (1965).

    Google Scholar 

  274. M. V. Fedoryuk, “The one-dimensional scattering problem in the quasi-classical approximation, Part 2,” Differents. Uravneniya, 1(11):1525–1536 (1965).

    MathSciNet  Google Scholar 

  275. M. V. Fedoryuk, “The topology of the Stokes line of a second-order equation,” Izv. Akad. Nauk SSSR, Ser. Matem., 29(3):645–656 (1965).

    Google Scholar 

  276. M. V. Fedoryuk, “Asymptotic methods in the theory of singular one-dimensional differential operators,” Trudy Mosk. Matern. Obshchestva, Vol. 15, 296–345 (1966).

    Google Scholar 

  277. M. V. Fedoryuk, “The asymptotic behavior of the solutions of linear ordinary differential equations of order n,” Differents. Uravneniya, 2(4):492–507 (1966).

    Google Scholar 

  278. M. V. Fedoryuk, “The asymptotic behavior of the eigenvalues and eigenfunc-tions of singular one-dimensional differential operators,” Dokl. Akad. Nauk SSSR, 169(2):288–291 (1966).

    MathSciNet  Google Scholar 

  279. S. F. Feshchenko, N. I. Shkil’, and L. D. Nikolenko, Asymptotic Methods in the Theory of Differential Equations, Naukova Dumka, Kiev (1966).

    Google Scholar 

  280. A.N. Filatov, “On the method of averaging for systems of integro-differential equations,” Dokl. Akad. Nauk SSSR, 105(3):490–492 (1965).

    MathSciNet  Google Scholar 

  281. A.N. Filatov, “Averaging in systems of differential equations not explicitly solved for the derivative,” Dokl. Akad. Nauk SSSR, 172(4):795–797 (1967).

    MathSciNet  Google Scholar 

  282. V.I. Fodchuk, “The construction of asymptotic solutions for nonstationary differential equations containing a retarded argument and a small parameter,” Ukrainsk. Matem. Zh., 14(4):435–440 (1962).

    Article  Google Scholar 

  283. V.I. Fodchuk, “On the continuous dependence of the solutions of differential equations containing a retarded argument on a parameter,” Ukrainsk. Matem. Zh., 16(2):273–279(1964);

    MathSciNet  Google Scholar 

  284. V. I. Fodchuk, “An investigation of the integral manifolds for systems of nonlinear differential equations containing a retarded argument,” Ukrainsk. Matem. Zh., 17(4):94–102 (1965).

    Article  Google Scholar 

  285. B. M. Fomel’, “Discontinuous oscillations in a dynamic multistable element,” in: Computing Systems, No. 21, Novosibirsk (1966), pp. 3–32.

    Google Scholar 

  286. A. Halanay, “The averaging method for systems of differential equations containing a retarded argument,” Rev. Math. Pures et Appl. (RPR), 4(3):467–483 (1959).

    MathSciNet  MATH  Google Scholar 

  287. A. Halanay, “Singular perturbations of self-regulating systems with retardation,” Rev. Math. Pures et Appl.(RPR), 7(4):627–631 (1962).

    MathSciNet  MATH  Google Scholar 

  288. A. Halanay, “Periodic and almost-periodic solutions of some singularly perturbed systems with retardation,” Rev. Math. Pures et Appl. (RPR), Vol. 8, 285–292 (1963).

    MathSciNet  MATH  Google Scholar 

  289. A. Halanay, “Singular perturbations of periodic systems. The critical case,” Rev. Roumaine Math. Pures et Appl., 11(8):951–960 (1966).

    MathSciNet  MATH  Google Scholar 

  290. M. M. Khapaev, “Asymptotic expansions of hypergeometric and degenerate hydrogeometric functions,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 5, 98–101 (1961).

    Google Scholar 

  291. M. M. Khapaev, “Linear differential equations containing a small parameter attached to some of the highest derivatives in the neighborhood of a regular singularity of the equation,” Usp. Matem. Nauk 16(4):187–194 (1961).

    MathSciNet  MATH  Google Scholar 

  292. M. M. Khapaev, “The asymptotic behavior of the solutions of linear ordinary differential equations containing a small parameter attached to the highest derivatives in the neighborhood of an irregular singularity,” Matem. Sbornik, 57(2):187–200 (1962).

    MathSciNet  Google Scholar 

  293. M. M. Khapaev, “On the averaging method and several problems associated with averaging,” Differents. Uravneniya, 2(5):600–608 (1966).

    Google Scholar 

  294. R. V. Khokhlov, A Method Based on Step-by-Step Simplification of Contracted Equations and Its Application to Problems in Radiophysics, Doctoral Dissertation, Physics Faculty, Moscow State University (1961).

    Google Scholar 

  295. A. P. Khromov, “Expansion in eigenfunctions of linear ordinary differential operators on a finite interval,” Dokl. Akad. Nauk SSSR, 146(6):1294–1297 (1962).

    MathSciNet  Google Scholar 

  296. A. P. Khromov, “Expansion in eigenfunctions of ordinary differential operators with irregular decomposable boundary conditions,” Dokl. Akad. Nauk SSSR, 152(6):1324–1326(1963).

    MathSciNet  Google Scholar 

  297. J. K. Hale and G. Seifert, “Bounded and almost-periodic solutions of singularly perturbed equations,” In: International Union on Theoret. and Applied Mechanics Symposium on Nonlinear Oscillations, Kiev, Sept. 1961, Inst. Matem. Akad. Nauk Ukrainsk. SSR, Kiev (1961), 9 pp.

    Google Scholar 

  298. F. L. Chernous’ko, “Resonance phenomena in the motion of a satellite about the center of mass,” Zh. Vychisl.Matem, i Matem. Fiz., 3(3):528–538 (1963).

    MathSciNet  Google Scholar 

  299. F. L. Chernous’ko, “On resonance in an essentially nonlinear systems,” Zh. Vychisl. Matem, i Matem. Fiz., 3(1): 131–144, (1963).

    Google Scholar 

  300. T. M. Cherry, “Uniform asymptotic formulas for functions with turning points,” in: Matematika [a collection of Russian translations], 9(4):87–118 (1965).

    Google Scholar 

  301. A. B. Shabat, “Boundary value problems involving a small parameter in the case of linear differential equations,” Usp. Matem. Nauk, 17(1):235–241 (1962).

    MATH  Google Scholar 

  302. M. K. Shashina, “The asymptotic behavior of the solution of a differential equation containing a small parameter attached to the highest derivative and a retardation.,” in: Transactions of the Seminar on the Theory of Differential Equations with a Deviating Argument, Vol. 4, Patrice Lumumba University (1967), pp. 173–181.

    Google Scholar 

  303. M. K. Shashina, “The asymptotic behavior of the solution of equations containing a small parameter attached to the highest derivative and a pertrubed argument,” Trudy Univ. Drozhby Narodov im. Patrisa Lumumby, 21:111–123 (1967).

    Google Scholar 

  304. R. F. Shevchenko, “Regularization of the trace of an ordinary differential operator,” Vestn. Mosk. Univ. Matem., Mekhan., No. 6, 28–36 (1965).

    Google Scholar 

  305. R. F. Shevchenko, “On the trace of a differential operator,” Dokl. Akad. Nauk SSSR, 164(1):62–65 (1965).

    MathSciNet  Google Scholar 

  306. R. F. Shevchenko, “On the zeros of almost-cylindrical functions,” Vestn. Wosk. Univ. Matem., Mekhan., No. 5, 12–15 (1966).

    Google Scholar 

  307. A. A. Shishkin, “The eigenvalues and eigenfunctions of some fourth-order differential operators containing a small parameter attached to the highest derivative,” Dokl. Akad. Nauk SSSR, 123(2):249–251 (1958).

    MathSciNet  MATH  Google Scholar 

  308. N. I. Shkir, “The asymptotic behavior of linear systems when the characteristic equation has multiple roots,” Ukrainsk. Matem. Zh., 14(4):383–392 (1962).

    Article  Google Scholar 

  309. N.I. Shkir, “The asymptotic solution of a system of linear differential equations when the characteristic equation has multiple roots,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 2, 176–185 (1964).

    Google Scholar 

  310. N.I. Shkil’, “Systems of linear differential equations containing a small parameter attached to some of the derivatives,” Differents. Uravneniya, 1(7):868–879 (1965).

    Google Scholar 

  311. N.I. Shkil’, “The construction of a general asymptotic solution of a system of linear differential equations containing a small parameter,” Izv. Vysshikh Uchebn. Zavedenii, Matematika, No. 1, 161–169 (1966).

    Google Scholar 

  312. A.M. Shusterovich, “An approximate solution of the phase equation describing the oscillations of a vacuum-tube oscillator subject to an external emf,” Radiotekhnika i Elektronika, 5(4): 568–577 (1960).

    Google Scholar 

  313. V. A. Yavrin, “The trace formula for Sturm-Liouville operators,” Aikakan SSSR Gitutyunneri Akademiya, Zekuitsner, 41(1): 14–21 (1963).

    Google Scholar 

  314. V. A. Yavrin, “The regularized trace of the difference of two singular Sturm-Liouville operators,” Dokl. Akad. Nauk SSSR, 169(1):49–52 (1966).

    MathSciNet  Google Scholar 

  315. V. Alfaro and T. de Regge, Potential Scattering, Amsterdam (1965).

    Google Scholar 

  316. C. H. Wilcox (ed.), Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, London (1964), 249 pp.

    MATH  Google Scholar 

  317. F. V. Atkinson, “Wave propagation and the Bremmer series,” J. Math. Analysis and Applic, 1(3–4):255–276 (1960).

    Article  MATH  Google Scholar 

  318. R. Bdlman, Stability Theory of Differential Equations, McGraw-Hill, New York(1953).

    Google Scholar 

  319. R. Bellman and K. L. Cooke, “On the limit of solutions of differential-diffeience equations as the retardation approaches zero,” Proc. Nat. Acad. Sci. USA 45(7):1026–1028 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  320. L. Beig, “Asymptotische Auflösung von Differential-Funktionalgleichungen,” Math Nachr., 17(3–6):195–210 (1959).

    MathSciNet  Google Scholar 

  321. L. Beig, “Asymptotische Lösungen für Operatorgleichungen,” Z. Angew. Math, und Mech., 45(5):333–352 (1965).

    Article  Google Scholar 

  322. B. L. Bieberbach, Theorie der Gewöhnlichen Differentialgleichungen, 2nd ed., Springer, Berlin (1965), 389 pp.

    Book  MATH  Google Scholar 

  323. G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter,” Trans. Am. Math. Soc., Vol. 9, 219–231 (1908).

    Article  MathSciNet  Google Scholar 

  324. K. Bochenek, “Les solutions asymptotiques des équations différentielles et l’évalution des restes,” in: Symposium on the Numerical Treatment of Ordinary Differential Equations, Integral, and Integrodifferential Equations, Birkhäuser, Berlin-Stuttgart (1960), pp. 430–440.

    Google Scholar 

  325. A. Bottino, A.M. Longoni, and T. de Regge, “Potential scattering for complex energy and angular momentum,” Nuovo Cimento, 23(6):954–1004 (1962).

    Article  MathSciNet  Google Scholar 

  326. T. F. Bridgland, Jr., “Asymptotic behavior of the solutions of nonhomogene -ous differential equations,” Proc. Am. Math. Soc., 12(4):546–552 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  327. S. Cerneau, “Sur la construction de solutions presque périodiques de problèmes de perturbation singulière,” Compt. Rendus Acad. Sci., 261(21):4311–4314(1965).

    MathSciNet  MATH  Google Scholar 

  328. L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Ergebn. Math., No. 16 (1959), 271 pp.

    MathSciNet  Google Scholar 

  329. C. R. Chester and J. B. Keller, “Asymptotic solutions of systems of linear ordinary differential equations with discontinuous coefficients,” J. Math, and Mech., 10(4):557–567 (1961).

    MathSciNet  MATH  Google Scholar 

  330. K. Chiba, “Note on the asymptotic behavior of solutions of a system of linear ordinary differential equations,” Comment. Math. Univ. St. Pauli, 13(11):51–62 (1965).

    MathSciNet  MATH  Google Scholar 

  331. R. A. Clark, “Asymptotic solutions of a nonhomogene ous differential equation with a turning point,” Arch. Ration. Mech. and Analysis, 12(1):34–51 (1963).

    Article  MATH  Google Scholar 

  332. E. A. Coddington and N. Levinson, “A boundary value problem for a nonlinear differential equation with a small parameter,” Proc. Am. Math. Soc., Vol. 3, 73–81 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  333. J. H. E. Cohn, “On the number of negative eigenvalues of a singular boundary value problem. II,” J. London Math. Soc., 41(3):469–473 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  334. R. H. Cole, “The expansion problem with boundary conditions at a finite set of points” Can. J. Math., 13(3):462–479 (1961).

    Article  MATH  Google Scholar 

  335. K. L. Cooke, “The condition of regular degeneration for singularly perturbed linear differential-difference equations,” J. Differential Equat., 1(1):39–94 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  336. K. L. Cooke and K. R. Meyer, “The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations,” J. Math. Analysis and Applic, 14(1):83–106 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  337. P. Dean, “The constrained quantum mechanical harmonic oscillator,” Proc Cambridge Phil. Soc., 62(2):277–286 (1966).

    Article  MathSciNet  Google Scholar 

  338. A. Devinatz, “The asymptotic nature of the solutions of certain linear systems of differential equations,” Pacif. J. Math., 15(1):75–83 (1965).

    MathSciNet  MATH  Google Scholar 

  339. C. L. Dolph, “Recent developments in some non-self-adjoint problems of mathematical physics,” Bull. Am. Math. Soc., 67(1): 1–69 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  340. W. Eberhard, “Das asymptotische Verhalten der Greenschen Funktion irregulärer Eigenwert próbie me mit zerfallenden Randbedingungen,” Math. Z., 86(1):45–53(1964).

    Article  MathSciNet  MATH  Google Scholar 

  341. W. Eberhard, “Die Entwicklungen nach Eigenfunktionen irregulärer Eigenwertprobleme mit zerfallenden Randbedingungen,” Math. Z., 86(3):205–214 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  342. W. Eberhard, “Lineare Eigenwertprobleme beliebiger Ordnung mit zerfallenden Randbedinungen,” Ber. Kernforschungsalange Jülich, No. 176 (1964), 92 pp.

    Google Scholar 

  343. W. Eberhard, “Die Entwicklungen nach Eigenfunktionen irregulärer Eigenwertprobleme mit zerfallenden Randbedingungen, II,” Math. Z., 90(2):126–137 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  344. A. Erdélyi, Asymptotic Expansions, Dover Publications, New York (1956).

    MATH  Google Scholar 

  345. A. Erdélyi, “Singular perturbations,” Bull. Am. Math. Soc., 68(4):420–424 (1962).

    Article  MATH  Google Scholar 

  346. A. Erdélyi, “On a nonlinear boundary value problem involving a small parameter,” J. Austral. Math. Soc., 2(4):425–439 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  347. A. Erdélyi, “Note on a paper by E. C. Titchmarsh: On the nature of the spectrum in problems of ielativistic quantum mechanics,” Quart. J. Math., 14(54): 147–152 (1963).

    Article  MATH  Google Scholar 

  348. A. Erdélyi, “Singular perturbations of boundary value problems involving ordinary differential equations,” J. Soc. Ind. Appl. Math., 11(1):105–116 (1963).

    Article  MATH  Google Scholar 

  349. M. Fertig, “Despre compcrtarea integralelor acutiilor diferentiale liniare cu coeficienti, care depind de un parametru,” Studia Univ. Babes-Bolyai, Math.-Phys., No. 1 (1960), pp. 121–130.

    MathSciNet  Google Scholar 

  350. M. Fertig, “Über das Verhalten der Lösungen eines Systems von Differentialgleichungen mit kleinem Parameter,” Mathematica (RPR), 2(2):217–252 (1960).

    MathSciNet  Google Scholar 

  351. J. G. Fikioris, “Asymptotic expansions of solutions of differential equations,” J. Math. Phys., 6(7):1131–1148 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  352. L. Flatto and N. Levinson, “Periodic solutions of singularly perturbed systems,” J. Rational Mech. and Analysis 4(6):943–950 (1955).

    MathSciNet  MATH  Google Scholar 

  353. K. O. Friedrichs, “Asymptotic phenomena in mathematical physics,” Bull. Am. Math. Soc., 61(6):485–504 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  354. K. O. Friedrichs and W. R. Wasow, “Singular perturbations of nonlinear oscillations,” Duke Math. J., 13(3):367–381 (1946).

    Article  MathSciNet  MATH  Google Scholar 

  355. N. Fröman and P. O. Fröman, The JWKB Approximation, Amsterdam (1965).

    Google Scholar 

  356. M. Giertz, “On the solutions in L2(-∞,∞) of y″+(λ-q(x))y = 0 when q(x) is rapidly increasing,” Proc. London Math. Soc., 14(53):53–73 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  357. R. C. Gilbert and V. A. Kramer, “Trace formulas for a perturbed operator,” Duke Math. J., 30(2):275–296 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  358. R. C. Gilbert and V. A. Kramer, “Trace formulas for powers of a Sturm -Liouville operator,” Can. J.Math., 16(3):412–422 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  359. S. Haber and N. Levinson, “A boundary value problem for a singularly perturbed differential equation,” Proc. Am. Math. Soc., Vol. 6, 866–872 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  360. A. Halanay, “Perturbations singulières des systèmes a retardement,” Compt. Rend. Acad. Sci., 253(16):1649–1650 (1961).

    MATH  Google Scholar 

  361. A. Halanay, “Perturbations singulières de systèmes autonomes,” Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. e Natur., 32(2):167–169 (1962).

    MathSciNet  MATH  Google Scholar 

  362. A. Halanay, “On the method of averaging for differential equations with retarded argument,” J. Math. Analysis and Applic, 14(1):70–76 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  363. A. Halanay, “An invariant surface for some linear singularly perturbed systems with time lag,” J. Differential Equat., 2(1):33–46 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  364. J. K. Hale, “On the method of Krylov-Bogoliubov- Mitr opolski for the existence of integral manifolds of perturbed differential systems,” Bol. Soc. Mat. Mexic, 5(1):51–57 (1960).

    MathSciNet  MATH  Google Scholar 

  365. J. K. Hale, “On the method of averaging,” IRE Trans. Circuit Theory, 7(4):517–519(1960).

    MathSciNet  Google Scholar 

  366. J. K. Hale, “Integral manifolds of perturbed differential systems,” Ann. Math., 73(3):496–531 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  367. J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill, New York (1963).

    MATH  Google Scholar 

  368. J. K. Hale, “Averaging methods for differential equations with retarded arguments and a small parameter,” J. Differential Equat., 2(1):57–73 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  369. J. K. Hale and G. Seifert, “Bonded and almost periodic solutions of singularly perturbed equations,” J. Math. Analysis and Applic, 3(1): 18–24 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  370. R. J. Hanson, “Reduction theorems for systems of ordinary differential equations with turning point,” J. Math. Analysis and Applic, 16(2):280–301 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  371. W. A. Harris, Jr., “Singular perturbations of eigenvalue problems,” Arch. Rational Mech. and Analysis, 7(3):224–241 (1961),

    Article  MathSciNet  MATH  Google Scholar 

  372. W. A. Harris, Jr., “Singular perturbations of two-point boundary problems,” J. Math, and Mech., 11(3):371–382 (1962).

    MathSciNet  MATH  Google Scholar 

  373. W. A. Harris, Jr., “Singular perturbations of a boundary value problem for a nonlinear system of differential equations,” Duke Math. J., 29(3):429–445 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  374. P. Hartman, “The existence of large or small solutions of linear differential equations,” Duke Math. J., 28(3):421–429 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  375. J. Heading, “The nonsingular embedding of transition processes within a more general framework of coupled variables,” J. Res. Nat, Bur. Std., D65(6):595–616 (1961).

    MathSciNet  Google Scholar 

  376. J. Heading, An Introduction to Phase-Integral Methocs, Methuen, London (1962).

    Google Scholar 

  377. J. Heading, “Uniform approximate solutions of certain n-th-order differential equations. I,” Proc Cambridge Phil. Soc., 59(1):95–110 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  378. H. Hochstadt, “Asymptotic estimates for the Sturm-Liouville spectrum,” Comm. Pure and Appl. Math., 14(4):749–764 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  379. H. Hochstadt, “On the asymptotic spectrum of Hill’s equation,” Arch. Math., 14(1):34–38 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  380. H. Hochstadt, “Estimates on the stability intervals for Hill’s equation,” Proc. Am. Math. Soc., 14(6):930–932 (1963).

    MathSciNet  MATH  Google Scholar 

  381. H. Hochstadt, “Functiontheoretic properties of the discriminant of Hill’s equation,” Math. Z., 82(3):236–242 (1963).

    Article  MathSciNet  Google Scholar 

  382. H. Hochstadt, “Instability intervals of Hill’s equation,” Comm. Pure and Appl. Math., 17(2):251–255 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  383. H. Hochstadt, “A stability estimate for differential equations with periodic coefficients,” Arch. Math., 15(4–5):318–320 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  384. F. C. Hoppensteadt, Singular Perturbations on the Infinite Interval, Doctoral Dissertation, University of Wisconsin (1965), 51 pp. Dissertation Abstr., 25(12) Part 1:7295–7296 (1965).

    Google Scholar 

  385. P.E. Hsieh, “A turning point problem for a system of linear ordinary differential equations of the third order,” Arch. Rational Mech. and Analysis, 19(2):117–148 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  386. P. E. Hsieh and Y. Sibuya, “On the asymptotic integration of second-order linear ordinary differential equations with polynomial coefficients,” J. Math. Analysis and Applic, 16(1):84–103 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  387. M. Hukuhara, “Sur les pointes singuliers des équations différentielles linéaires; Domaine réel,” Hokkaido Imperial University, 1(2):13–88 (1934).

    Google Scholar 

  388. M. Iwano, “Convergent solutioa of a system of ordinary nonlinear differential equations containing a small parameter,” Comment. Math. Univ. St. Pauli, 10(1):27–56 (1961).

    MathSciNet  MATH  Google Scholar 

  389. M. Iwano, “On a system of non-linear ordinary differential equations containing a small parameter. II, ” Kodai Math. Seminar Reports, 14(2): 95–109 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  390. M. Iwano, “Asymptotic solution of Whittaker’s differential equation as the moduli of the independent variables and two parameters tend to infinity,” Japan J. Math., Vol. 33, 1–92 (1963).

    MathSciNet  MATH  Google Scholar 

  391. M. Iwano, “On the behavior of the solutions of an n-th-order linear ordinary differential equation,” Japan J. Math., Vol. 34, 1–52 (1964).

    MathSciNet  MATH  Google Scholar 

  392. M. Iwano, “On the study of asymptotic solutions of a system of linear ordinary differential equations containing a parameter with a singular point,” Japan J. Math., 35(1):1–30 (1965).

    MathSciNet  MATH  Google Scholar 

  393. M. Iwano, and T. Saito, “On a system of non-linear ordinary differential equations containing a parameter,” Kodai Math. Seminar Reports, 13(2): 65–92 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  394. M. Iwano and Y. Sibuya, “Reduction of the order of a linear ordinary differential equation containing a small parameter,” Kodai Math. Seminar Reports, 15(1):1–28 (1963).

    Article  MathSciNet  Google Scholar 

  395. K. Jörgens, “Die asymptotische Verteilung der Eigenwerte singulärer Sturm-Liouville-Probleme,” Suomalais. Tideakat. Toimituks, Ser. A1, No. 336/4 (1963), 24 pp.

    Google Scholar 

  396. S. Jorna, “Derivation of Green-type, transitional, and uniform asymptotic expansions from differential equations. I. General theory and application to mocified Bessel functions of iarge order,” Proc. Roy. Soc., A281(1384):99–110 (1964).

    MathSciNet  Google Scholar 

  397. S. Jorna, “Derivation of Green-type, transitional, and uniform asymptotic expansions from differential equations. II. Whittaker functions Wk,m for large k, and for large |k2-m2|,” Proc. Roy. Soc., A281(1384): 111–129 (1964).

    MathSciNet  Google Scholar 

  398. S. Jorna, “Derivation of the Green-type, transitional, and uniform asymptotic expansions from differential equations. III. The confluent hypergeometric functions U(a, c, z) for large |c|,” Proc. Roy, Soc., A284(1399):531–539 (1965).

    MathSciNet  Google Scholar 

  399. S. Jorna, “Derivation of Green-type, transitional, and uniform asymptotic expansions from differential equations. IV. Periodic Mathieu functions ce(z, h) and se(z, h) for large h,” Proc. Roy. Soc., A286(1406):366–375 (1965).

    MathSciNet  Google Scholar 

  400. I. Kay, “Some remarks concerning the Bremmer series,” J. Math. Analysis and Applic, 3(1):40–49(1961).

    Article  MathSciNet  MATH  Google Scholar 

  401. N. D. Kazarinoff and R. K. Ritt, “Scalar diffraction theory and turning point problems,” Arch. Rational Mech. and Analysis, 5(2):177–186 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  402. H. B. Keller and J. B. Keller, “Exponential-like solutions of systems of linear ordinary differential equations,” J. Soc. Ind. Appl. Math., 10(2):246–259 (1962).

    Article  MATH  Google Scholar 

  403. J. Kisynski, “Sur les équations hyperboliques avec petit paramétre,”Colloq. Math., 10(2):331–343(1963).

    MathSciNet  MATH  Google Scholar 

  404. M. Kohno, “A two-point connection problem involving logarithmic polynomials,” Publications Res. Inst. Math. Sci., A2(2):269–305 (1966).

    Article  MathSciNet  Google Scholar 

  405. J. Kolãrova, “Asymptotické vzorce pro řešeni lineárni differenciální rovnice. 3. Radu v připadě neoscilatorickém,” in: Sb. Vysokého ŭcení techn, Brně, No. 1–4 (1963), pp. 253–257.

    Google Scholar 

  406. J. Kurzweil, “Über die asymptotische Methode in der Theorie der nicht -linearen Differentialgleichungen,” Abhandl. Dtsch. Akad. Wiss. Berlin, Kl. Math., Phys. und Techn., No. 1, 1–9 (1965).

    MathSciNet  Google Scholar 

  407. R. E. Langer, “The asymptotic solutions of ordinary linear differential equations of the second order with special reference to the Stokes phenomenon,” Bull. Am. Math. Soc., 11(8):545–586 (1934).

    Article  Google Scholar 

  408. R. E. Langer, “Turning points in linear asymptotic theory,” Bol. Soc. Mat. Mexic, 5(1):1–12(1960).

    MATH  Google Scholar 

  409. R. E. Langer, “On the construction of related equations for the asymptotic theory of linear ordinary differential equations about a turning point,” Enseign. Math., 8(3–4):218–237 (1962).

    MATH  Google Scholar 

  410. J. Lanke, “On the asymptotic distribution of eigenvalues of certain one-dimensional Sturm -Liouville operators,” Math. Scad., 9(1a):69–70 (1961)

    MathSciNet  MATH  Google Scholar 

  411. A.C. Lazer, “On the asymptotic behavior of the solutions of the differential equation y″ + p(x)y = 0,” Proc Am. Math. Soc., 16(6)1295–1298 (1965).

    MathSciNet  MATH  Google Scholar 

  412. J. J. Levin, “Singular perturbations of nonlinear systems of differential equations related to conditional stability,” Duke Math. J., 23(4):609–620 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  413. J.J. Levin, “The asymptotic behavior of the stable initial manifolds of a system of nonlinear differential equations,” Trans. Am. Math. Soc., 85(2):357–368 (1957).

    Article  MATH  Google Scholar 

  414. J. J. Levin and N. Levinson, “Singular perturbations of non-linear systems of differential equations and an associated boundary layer equation,” J. Rational Mech. and Analysis, 3(12):247–270 (1954).

    MathSciNet  MATH  Google Scholar 

  415. N. Levinson, “Perturbations of discontinuous solutions of nonlinear systems of differential equations,” Acta Math., 82(1–2):71–106 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  416. N. Levinson, “A boundary value problem for a singularly perturbed differential equation,” Duke Math. J., 25(2):331–342 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  417. N. Levinson, “The stability of linear, real, perodic self-adjoint systems of differential equations,” J. Math Analysis and Applic, 6(3):473–482 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  418. J. W. Macki, Singular Perturbations of a Boundary-Value Problem for a System of Nonlinear Differential Equations, Doctoral Dissertation, California Institute of Technology (1964), 53 pp. Dissertation Abstr., 25(8):4728 (1965).

    Google Scholar 

  419. D. McGarvey, “Linear differential systems with periodic coefficients involving a large parameter,” J. Differential Equat., 2(2):115–142 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  420. R. W. McKelvey, “Asymptotic solutions and indefinite boundary value problems,” in: asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 109–127.

    Google Scholar 

  421. J. B. McLeod, “On an integral in the distribution of eigenvalues,” Proc. Edinburgh Math. Soc., 12(4):205–208 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  422. J. B. McLeod, “The determination of phase shift,” Quart. J. Math., 12(45):17–32 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  423. J. B. McLeod, “The determination of the transmission coefficient,” Quart. J. Math., 12(46):153–158 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  424. J. B. McLeod and E.C. Titchmarsh, “On the asymptotic distribution of eigenvalues,” Quart. J. Math., 10(40):313–320 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  425. E. J. McShane, “On the solutions of the differential equation y″ + p2y = 0,” Proc. Am. Math. Soc., 17(1):55–61 (1966).

    MathSciNet  MATH  Google Scholar 

  426. A. Meir, D. Villett, and J. S. W. Wong, “A stability condition for y″ + p(x)y= 0,” Mich. Math. J., 13(2):169–170 (1966).

    Article  Google Scholar 

  427. W. L. Miranker, “Singular perturbation analyses of the differential equations of a tunnel diode circuit,” Quart. J. Appl. Math., 20(3):279–299 (1962).

    MathSciNet  Google Scholar 

  428. E. F. Mishchenko and L. S. Pontryagin, “Differential equations with a small parameter attached to the higher derivatives and some problems in the theory of oscillation,” IRE Trans. Circuit Theory, 7(4):527–535 (1960).

    Google Scholar 

  429. L.I. Mishoe, “Fourier series and eigenfunction expansions associated with a non-self-adjoint differential equation,” Quart. J. Appl. Math., 20(2):175–181 (1962).

    MathSciNet  MATH  Google Scholar 

  430. E. L. Murphy and R. H. Good, Jr., “WKB connection formulas,” J. Math. Phys., 43(3):251–254 (1964).

    MathSciNet  Google Scholar 

  431. M. Nagumo, “Über das verhalten des Integrals von λy″ + f (x, y, y’λ) = 0 für λ → 0,” Proc. Phys. Math. Soc. Japan, Vol. 21, 529–534 (1939).

    MathSciNet  Google Scholar 

  432. M. Nagumo, “Perturbation and degeneration of evolutional equations in Banach spaces,” Osaka Math. J., 15(1):1–10 (1963).

    MathSciNet  MATH  Google Scholar 

  433. T. Nishimoto, “On matching methods in turning point problems,” Kodai Math. Seminar Reports, 17(3):198–221 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  434. T. Nishimoto, “On a matching method for a linear ordinary differential equation containing a parameter. I,” Kodai Math. Seminar Reports, 17(4):307–328 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  435. K. Okubo, “On certain reduction theorems for systems of differential equations which contain a turning point,” Proc. Japan Acad., 37(1):544–549 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  436. K. Okubo, “A global representation of a fundamental set of solutions and a Stokes phenomenon for a system of linear ordinary differential equations,” J. Math. Soc. Japan, 15(3):268–288 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  437. K. Okubo, “A connection problem involving a logarithmic function,” Publications Res. Inst. Math. Sci., A1(1):99–128 (1965).

    Article  MathSciNet  Google Scholar 

  438. F. W. J. Olver, “Two inequalities for parabolic cylinder functions,” Proc. Cambridge Phil. Soc., 57(4):811–822 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  439. F. W. J. Olver, “Error bounds for first approximations in turning-point problems,” J. Soc. Ind. Appl. Math., 11(3):748–772 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  440. F. W. J. Olver, “Error analysis of phase-integral methods. I. General theory for simple turning points,” J. Res. Nat. Bur. Std., B69(4):271–290 (1965).

    MathSciNet  Google Scholar 

  441. F. W. J. Olver, “Error analysis of phase-integral methods. II. Application to wave-penetration problems,” J. Res. Nat. Bur. Std., B69(4):291–300 (1965).

    MathSciNet  Google Scholar 

  442. F. W. J. Olver, “On the asymptotic solutions of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker’s functions,” J. Soc. Ind. Appl. Math., B2(2):225–243 (1965).

    MathSciNet  Google Scholar 

  443. F. W. J. Olver, “Error bounds for asymptotic expansions, with an application to cylinder functions of large argument,” in: Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 163–183.

    Google Scholar 

  444. F.W.J. Olver and F. Stenger, “Error bounds for asymptotic solutions of second -order differential equations having an irregular singularity of arbitrary rank,” J. Soc. Ind. Appl. Math., B2(2):244–249 (1965).

    MathSciNet  Google Scholar 

  445. H. Payne, “Approximate solution of Hill’s equation,” J. Math. Phys., 7(3):474–478 (1966).

    Article  MATH  Google Scholar 

  446. L. Perion, “Über lineare Differentialgleichungen mit reeler unabhängig Variabler,” in: Stizungsber. Bayer. Akad. Wiss. Math.-Naturwiss. K1. 1960, Munich (1961), pp. 1–10.

    Google Scholar 

  447. L. Perron, “Über das Verhalten der Integrale einer linearen Differentialgleichung, wenn die unabhängig Variable gegen +∞ geht,” in: Sitzungsber. Bayer. Akad. Wiss. Math.-Naturwiss. Kl. 1960, Munich (1961), pp. 35–53.

    Google Scholar 

  448. E. R. Pike, “On the related-equation method of asymptotic approximation (W. K. B. or A-A method). I. A proposed new existence theorem,” Quart. J. Meet, and Appl. Math., 17(1):105–124 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  449. E. R. Pike, “On the related-equation method of asymptotic approximation (W. K. B. or A-A method). II. Direct solution’s of wave-penetration problems,” Quart. J. Mech. and Appl. Math., 17(3):369–379 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  450. C. G. G. Pitts, “Asymptotic approximations to solutions of a second-order differential equation,” Quart. J. Math., 17(60):307–32C (1966).

    Article  MathSciNet  MATH  Google Scholar 

  451. M. Ráb, “Asymptotische Formeln für die Lösungen der Differentialgleichung y″ + q(x)y = 0,” Chekhosl. Matern. Zh., 14(2):203–221 (1964).

    Google Scholar 

  452. M. Ráb, “Note sur les formules asymptotiques pour les solutions d’un système d’équations différentielles linéaires,” Chekhosl. Matem. Zh., 16(1):127–129 (1966).

    Google Scholar 

  453. M. Ráb, “Les dévelopements asymptotiques des solutions de l’équation (py’)’ + qy = 0,” Arch. Mat., 2(1):1–17 (1966).

    MATH  Google Scholar 

  454. E. R. Rang, “Periodic solutions of singular perturbation problems,” in: Proceedings of the International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Colorado Springs, 1961, Academic Press, New York (1963), pp. 377–383.

    Google Scholar 

  455. D. R. K. Rao, “Asymptotic behavior of differential systems,” Proc. Nat. Acad. India, A35(2):234–241 (1965).

    Google Scholar 

  456. B. W. Roos and W. C. Sangren, “Spectra for a pair of singular first-order differential equations,” Proc. Am. Math. Soc., 12(3):468–476 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  457. B.W. Roos and W. C. Sangren, “Spectral theory of Dirac’s radial relativistic wave equation,” J. Math. Phys., 3(5):882–890 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  458. B. W. Roos and W. C. Sangren, “Three spectral theorems for a pair of singular first-order differential equations,” Pacific J. Math., 12(3):1047–1055 (1962).

    MathSciNet  MATH  Google Scholar 

  459. B. W. Roos and W. C. Sangren, “Expansions associated with a pair of singular first-order differential equations,” J. Math. Phys., 4(8):999–1008 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  460. B.W. Roos and W. C. Sangren, “Asymptotic solutions and an equiconvergence theorem for a pair of first-order differential equations,” J. Soc. Ind. Appl. Math., 11(2):421–430 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  461. T. V. S. L. N. Sastry, Turning Point Problems for Certain Systems of Linear Differential Equations, Doctoral Dissertation, University of Wisconsin (1965), 73 pp. Dissertation Abstr., 26(9):5466 (1966).

    Google Scholar 

  462. Y. Sato, “On a system of nonlinear ordinary differential equations containing a small parameter,” Comment. Math. Univ. St. Pauli, 14(1):25–52 (1966).

    MATH  Google Scholar 

  463. Y. Sibuya, “Sur réduction analytique d’un système d’équations différentielles ordinaires linéaires contenant un paramétre,” J. Fac. Sci. Univ. Tokyo, Sec. 1, 7(5):527–540 (1958).

    MathSciNet  MATH  Google Scholar 

  464. Y. Sibuya, “On nonlinear ordinary differential equations containing a parameter,” J. Math, and Mech., 9(3):369–397 (1960).

    MathSciNet  MATH  Google Scholar 

  465. Y. Sibuya, “On perturbations of discontinuous solutions of ordinary differential equations,” Natur. Sci. Report Ochanomizu Univ., 11(1): 1–18 (1960).

    MathSciNet  MATH  Google Scholar 

  466. Y. Sibuya, “Asymptotic solutions of a linear ordinary differential equation of n-th order about a simple turning point,” in: Proceedings of the International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Colorado Springs, 1961, Academic Press, New York (1963), pp. 485–488.

    Google Scholar 

  467. Y. Sibuya, “On the problem of turning points for a system of linear ordinary differential equations of higher order,” in: Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 145–162.

    Google Scholar 

  468. Y. Sibuya, “Asymptotic solutions of initial value problems of ordinary differential equations with a small parameter in the derivative, I,” Arch. Ratioaal Mech. and Analysis, 14(4):304–311 (1963).

    MathSciNet  MATH  Google Scholar 

  469. Y. Sibuya, “Asymptotic solutions of initial value problems of ordinary differential equations with a small parameter in the derivative. II,” Arch. Rational Mech. and Analysis, 15(3):247–262 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  470. Y. Sibuya, “A block-diagcnalization theorem for systems of linear ordinary differential equations and its application,” SIAM J. Appl. Math., 14(3):468–475 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  471. R. A. Smith, “Asymptotic stability of x″ + a(t)x″ + x = 0,” Quart. J.Math., 12(46): 123–126 (1961).

    Article  MATH  Google Scholar 

  472. J. A. Smoller, “Singular perturbations and a theorem of Kisynski,” J. Math. Analysis and Applic, 12(1):105–114 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  473. C. R. Steele, “On the asymptotic solution of nonhomogeneous ordinary differential equations with a large parameter,” Quart. J. Appl. Math., 23(3):193–201 (1965).

    MathSciNet  MATH  Google Scholar 

  474. E. C. G. Stückelberg, “Theorie der unelastischen Stösse zwischen Atomen,” Helv. Phys. Acta, Vol. 5, 369–422 (1932).

    Google Scholar 

  475. M. Švec, “Asymptotische Darstellung der Lösungen der Differentialgleichung y(n) + Q(x)y = 0, n = 3, 4,” Czechosl. Math. J., 12(4):572–581 (1962).

    Google Scholar 

  476. K. Takahashi, “Über eine asymptotische Darstellung der Lösung eines Systèmes von Differentialgleichungen, welche von zwei Parametern abhängen, und eine Anwendung auf spezielle Differentialgleichungen zweiter Ordung,” Tohoku Math. J., 13(1):1–17 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  477. K. Takahashi, “Die Besselsche Differentialgleichung und eine lineare Differentialgleichung dritter Ordnung mit einem Wendepunkt,” Tohoku Math. J., 14(1):1–14 (1962).

    Article  MathSciNet  Google Scholar 

  478. H. Tanabe, “Note on singular perturbation for abstract differential equations,” Osaka J. Math., 1(2):239–252 (1964).

    MathSciNet  MATH  Google Scholar 

  479. E.G. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Vol.1, Clarendon Press, Oxford (1946).

    Google Scholar 

  480. E. G. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Vol. II, Clarendon Press, Oxford (1958).

    MATH  Google Scholar 

  481. E. G. Titchmarsh, “On the completeness problem for the eigenfunction formulae of relativistic quantum mechanics,” Proc. Roy. Soc., A262(1311):489–502 (1961).

    Google Scholar 

  482. E. G. Titchmarsh, “Some eigenfunction expansion formulae,” Proc. London Math. Soc., 11(41):159–168 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  483. E. G. Titchmarsh, “On the nature of the spectrum in problems of relativistic quantum mechanics,” Quart. J. Math., 12(47):227–240 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  484. E. G. Titchmarsh, “On an eigenvalue problem occurring in quantum mechanics,” in: Studies in Mathematical Analysis and Related Topics, University of California Press, Stanford (1962), pp. 399–403.

    Google Scholar 

  485. E. G. Titchmarsh, “On the nature of the spectrum in problems of relativistic quantum mechanics. II,”Quart. J. Math., 13(51):181–192 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  486. E. G. Titchmarsh, “On the nature of the spectrum in problems of relativistic quantum mechanics. III,”Quart. J. Math., 13(52):255–263 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  487. E.G. Titchmarsh, “On the relation between eigenvalues in relativsitic and non-relativistic quantum mechanics,” Proc. Roy. Soc., A266(1324):33–46 (1962).

    MathSciNet  Google Scholar 

  488. W. F. Trench, “On the asymptotic behavior of solutions of second-order linear differential equations,” Proc. Am. Math. Soc., 14(1):12–14 (1953).

    Article  MathSciNet  Google Scholar 

  489. H. L. Turrittin, “Asymptotic expansions of solutions of systems of ordinary differential equations,” in: Contributions to the Theory of Nonlinear Oscillations. II, Ann. Math. Studies, No. 29, Princeton (1936), pp. 81–116.

    Google Scholar 

  490. H. L. Turrittin,“Reduction of ordinary differential equations to the Birkhoff canonical form,” Trans. Am. Math. Soc., 107(3):485–507 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  491. H. L. Turrittin, “Solvable related equations pertaining to turning point problems,” in: Asymptotic Solution of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 27–59.

    Google Scholar 

  492. V. M. Volosov, “Rotation and vibration of some perturbed systems,” in: Colloq. Internat. Centre Nat. Rech. Scient. (1965), Paper No. 148, pp. 237–241.

    Google Scholar 

  493. W. Wasow, “On the asymptotic solution of boundary value problems for ordinary differential equations containing a parameter,” J. Math. Phys., Vol. 23, 173–183(1944).

    MathSciNet  Google Scholar 

  494. W. Wasow, “On the construction of periodic solutions of singular perturbation problems,” in: Ann. Math. Studies, No. 20, Princeton University Press (1950), pp. 313–350.

    Google Scholar 

  495. W. Wasow, “Asymptotic solution of the differential equation of hydrodynamic stability in a domain containing a transition point,” Ann. Math., Vol. 58, 222–252(1953).

    Article  MathSciNet  MATH  Google Scholar 

  496. W. Wasow, “Singular perturbations of boundary value problems for nonlinear differential equations of the second order,” Comm. Pure and Appl. Math., 9(1):93–113(1956).

    Article  MathSciNet  MATH  Google Scholar 

  497. W. Wasow, “Turning point problems for systems of linear differential equations. Part I: The formal theory,” Comm. Pure and Appl. Math., 14(3):657–673 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  498. W. Wasow, “Turning point problems for systems of linear differential equations. Part II. The analytic theory,” Comm. Pure and Appl. Math., 15(2):173–187(1962).

    Article  MathSciNet  Google Scholar 

  499. W. Wasow, “Singular perturbation problems of systems oftwo ordinary analytic differential equations,” Arch. Rational Mech. and Analysis, 14(1):61–80 (1963).

    MathSciNet  MATH  Google Scholar 

  500. W. Wasow, “Simplification of turning point problems for systems of linear differential equations,” Trans. Am. Math. Soc., 106(1):100–114 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  501. W. Wasow, “Asymptotic expansions for ordinary differential equations — Trends and problems,” in: Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York (1964), pp. 3–26.

    Google Scholar 

  502. W. Wasow, “Asymptotic decomposition of systems of linear differential equations having poles with respect to a parameter,” Rend. Circolo Mat. Palermo, 13(3):329–344 (1965).

    Article  MathSciNet  Google Scholar 

  503. W. Wasow, “Asymptotic simplification of self-adjoint differential equations with a parameter,” J. Differential Equat., 2(4):378–390 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  504. W. Wasow, Asymptotic Expansion for Ordinary Differential Equations, John Wiley, New York (1966).

    Google Scholar 

  505. R. Zanovello, “Un’estensione di un teorema di Milloux,” Rend. Seminar Mat. Univ. Padova, 31(1):165–170 (1961).

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Butuzov, V.F., Vasil’eva, A.B., Fedoryuk, M.V. (1970). Asymptotic Methods in the Theory of Ordinary Differential Equations. In: Gamkrelidze, R.V. (eds) Mathematical Analysis. Progress in Mathematics, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3303-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3303-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3305-0

  • Online ISBN: 978-1-4684-3303-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics