Skip to main content

Incorporation of Purine Analogs into the Nucleotide Pools of Human Erythrocytes

  • Chapter
Purine Metabolism in Man

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 41A))

Abstract

For the past decade this laboratory has devoted much of its attention to an examination of various facets of purine metabolism in human erythrocytes. These cells do not have the complete pathway for the de novo synthesis of purines and do not make nucleic acids. On the other hand, they have an active nucleotide metabolism and contain the salvage enzymes, hypoxanthine-guanine phosphoribosyl transferase (HGPRTase), adenine phosphoribosyl transferase (APRTase) and adenosine kinase. In view of the fact that the activities of certain enzymes of purine metabolism are quite high (e.g., purine nucleoside phosphorylase occurs at a level of about 15 umolar units/ml of erythrocytes) and the total mass of erythrocytes in the adult human being is in excess of two liters, it appears that these cells play an important and perhaps not yet fully appreciated role in the whole body economy of purines in man. Therefore, we believe that the human erythrocyte provides a very useful model system for the examination of purine metabolism in man as well as for investigations of the action of certain purine and purine nucleoside antimetabolites, many of which are important in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, K. C. and Parks, Jr., R. E. (1972), Mol. Pharmacol. 8, 128

    PubMed  CAS  Google Scholar 

  • Agarwal, R. P. Sagar, S. M. and Parks, Jr., R. E. (1973), Fed. Proc. 32, 512

    Google Scholar 

  • Agarwal, R. P., Scholar, E. M., Agarwal, K. C. and Parks, Jr., R. E. (1971), Biochem. Pharmacol. 20, 1341

    Article  CAS  Google Scholar 

  • Brown, P. R. (1970), J. Chromatog. 52, 257

    Article  CAS  Google Scholar 

  • Brown, P. R. (1973), “High Pressure Liquid Chromatography”, Academic Press, N. Y.

    Google Scholar 

  • Brown, P. R., Agarwal, R. P., Gell, J. and Parks, Jr., R. E. (1972), Comp. Biochem. Physiol. 433, 891

    Google Scholar 

  • Brown, P. R. and Parks, Jr., R. E. (1973), this volume Dixon, M. (1952), Biochem. J. 55, 161

    Google Scholar 

  • Goldberg, N. D., Dahl, J. L. and Parks, Jr., R. E. (1963), J. Biol. Chem. 238, 3109

    PubMed  CAS  Google Scholar 

  • Horvath, C., Preiss, B. and Lipsky, S. (1967), Anal. Chem. 39, 1422

    Article  PubMed  CAS  Google Scholar 

  • Krenitsky, T. A., Papaioannou, R. and Elion, G. B. (1969), J. Biol. Chem. 244, 1263

    PubMed  CAS  Google Scholar 

  • Manohar, S. V., Lerner, M. H. and Rubenstein, D. (1968), Can. J. Biochem. 46, 455

    Google Scholar 

  • Meyskens, F. L. and Williams, H. E. (1971), Biochim. Biophys. Acta 240, 170

    CAS  Google Scholar 

  • Miller, R. L. and Bieber, A. L. (1968), Biochemistry 7, 1420

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. L. and Bieber, A. L. (1969), Biochemistry 8, 603

    Article  PubMed  CAS  Google Scholar 

  • Moore, E. C. and LePage, G. A. (1958), Cancer Res. 18, 1075

    PubMed  CAS  Google Scholar 

  • Nelson, D. J., Bugge, C. J. L., Krasny, H. C. and Zimmerman, T. P. (1973), J. Chromatog. 77, 181

    Article  CAS  Google Scholar 

  • Parks, Jr., R. E. and Agarwal, R. Vol. 7, 3rd ed. (Paul D. Boyer, Parks, Jr., R. E. and Brown, P. R. press)

    Google Scholar 

  • Parks, Jr., R. E., Brown, P. R., Cheng, Y-C., Agarwal, K. C., Kong, C. M., Agarwal, R. P. and Parks, Christopher C. (1973), Comp. Biochem. Physiol. 45B, 355

    Google Scholar 

  • Ross, A. F., Agarwal, K. C., Chu, S.-H. and Parks, Jr., R. E. (1973), Biochem. Pharmacol. 22, 141

    Article  PubMed  CAS  Google Scholar 

  • Scholar, E. M., Brown, P. R., Parks, Jr., R. E. and Calabresi, P. (1973), Blood (in press )

    Google Scholar 

  • Way, J. L. and Parks, Jr., R. E. (1958), J. Biol. Chem. 231, 467

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Parks, R.E., Brown, P.R., Kong, C.M. (1974). Incorporation of Purine Analogs into the Nucleotide Pools of Human Erythrocytes. In: Sperling, O., De Vries, A., Wyngaarden, J.B. (eds) Purine Metabolism in Man. Advances in Experimental Medicine and Biology, vol 41A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3294-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3294-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3296-1

  • Online ISBN: 978-1-4684-3294-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics