Advertisement

Influence of CO2 on Polarographic Oxygen Sensors

  • H. P. Kimmich
  • F. Kreuzer
  • J. Spaan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)

Abstract

For the assessment of oxygen transport to tissue, both for physiological research and clinical routine monitoring, continuous measurement of PO2 is essential. Both during in vitro and in vivo experiments oxygen is generally not present alone but is in close relation to other blood gases, especially CO2. It is thus important to know and understand the effects of variable CO2 concentrations on the oxygen measurement.

Keywords

Oxygen Reduction Oxygen Electrode Automatic Gain Control Oxygen Cell Polarographic Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delahay, P., 1950, A Polarographic method for the indirect determination of polarization curves for oxygen reduction on various metals. I. Description of the method — Case of platinum. J. Electrochem. Soc. 97:198–212.CrossRefGoogle Scholar
  2. Haas De, P.W., 1977, De ontwikkeling en toepassing van een zuur-stofelectrode voor het continu meten van de intra-arteriële zuurstofspanning bij pasgeborenen met ademhalingsproblernen. Thesis, Rotterdam, 128 pp.Google Scholar
  3. Kimmich, H.P., and Kreuzer, F., 1969, Catheter PO2 electrode with low flow dependency and fast response, in : Progr. Resp. Res. 3, F. Kreuzer, ed., H. Herzog, Series ed., Karger, Basel: pp 100–110.Google Scholar
  4. Kimmich, H.P., Kreuzer, F., and Spaan, J.G., 1975, Rapid blood oxygen transducer, mounted on a 1.2 mm catheter. Biocapt. 75:307–312.Google Scholar
  5. Kimmich, H.P., and Kandelaars, J.J., 1980, Calculation of oxygen uptake from continuously telemetered flow and PO2 with the aid of a 8085 microprocessor, in: Biotelemetry V, G. Matsumoto and H.P. Kimmich, eds., Sapporo, pp 229–234.Google Scholar
  6. Kreuzer, F., Kimmich, H.P., and Brezina, M., 1980, Polarographic determination of oxygen in biological materials, in: Medical and Biological Applications of Electrochemical Devices, J. Koryta, ed., John Wiley & Sons Ltd., Chichester — New York — Brisbane — Toronto, Chapter 6, pp 173–261.Google Scholar
  7. Küchler, G., Wagner, W., and Wolburg, I., 1978, Experimental study on errors in dynamic measurement of oxygen intake, in: Biotelemetry IV, H.-J. Klewe and H.P. Kimmich, eds., Braunschweig, pp 109–112.Google Scholar
  8. Lackermann, E.M., Kreuzer, F., Folk, G.E., Jr., and Kimmich, H.P., 1983, The measurement of pO2 by O2 electrode in the presence of changing pCO2. Proc. Iowa Acad. Sci. 90:141–143.Google Scholar
  9. Parker, D., Delpy, D., and Lewis, M., 1978, Catheter-tip electrode for continuous measurement of pO2 and pCO2. Med. Biol. Eng. Comput. 16:599–600.PubMedCrossRefGoogle Scholar
  10. Soutter, L.P., Conway, M.J., and Parker, D., 1975, A system for monitoring arterial oxygen tensions in sick newborn babies. Biomed. Eng. 10:257:260.Google Scholar
  11. Vetter, K.J., 1961, Elektrochemische Kinetik. Springer-Verlag, Berlin.Google Scholar
  12. Vielstich, W., 1958, Zum Mechanismus der Sauerstoffelektrode in alkalischem Elektrolyten. Z. physik. Chem. Neue Folge 15: 409–428.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • H. P. Kimmich
    • 1
  • F. Kreuzer
    • 1
  • J. Spaan
    • 1
  1. 1.Department of PhysiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations