Human Mammary Carcinomas in Nude Rats — A New Approach for Investigating Oxygen Transport and Substrate Utilization in Tumor Tissues

  • P. Vaupel
  • F. Kallinowski
  • S. Dave
  • H. Gabbert
  • G. Bastert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)


An understanding of tumor pathophysiology with respect to blood flow, oxygenation status, pH distribution and utilization of the relevant substrates which, all together, critically influence growth kinetics and the efficiency of nonsurgical therapeutic modalities in vivo requires information derived directly from human malignant tissues. At present, only inadequate knowledge of the relevant physiological factors in tumor tissues of patients are accessible. The little data available to date were obtained from clinical observations rather than from systematic studies, i.e., data were collected from various tumor types with differing staging and grading. For this reason generally valid statements concerning the above mentioned parameters cannot be made.


Oxygen Tension Regional Blood Flow Tumor Blood Flow Tumor Oxygen Tissue Oxygen Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angello, J.C., and Hosick, H.L., 1982, Glycosaminoglycan synthesis by mammary tumor spheroids, Biochem. Biophys. Res. Comm., 107: 1130–1137.PubMedCrossRefGoogle Scholar
  2. Ashby, B.S., 1966, pH studies in human malignant tumours, Lancet, 2: 312–315.PubMedCrossRefGoogle Scholar
  3. Badib, A.O., and Webster, J.H., 1969, Changes in tumor oxygen tension during radiation therapy, Acta radiol., 8: 247–257.CrossRefGoogle Scholar
  4. Bastert, G. B., Fortmeyer, H.P., and Schmidt- Matthiesen, H. (eds.),1981 a, Thymusaplastic nude mice and rats in clinical oncology, G. Fischer Verlag, Stuttgart, New York.Google Scholar
  5. Bastert, G., Eichholz, H., Fortmeyer, H.P., Michel, R.T., Huck, R., and Schmidt- Matthiesen, H.,1981b, Comparison of human breast cancer xenotransplantation in nu/nu mice and rnu/rnu rats, in: Thymusaplastic nude mice and rats in clinical oncology, G.B. Bastert et al., eds., G. Fischer Verlag, Stuttgart, New York.Google Scholar
  6. Beaney, R.P., Lammertsma, A.A., Jones, T., McKenzie, CG., and Hainan, K.E., 1984, Positron emission tomography for in- vivo measurements of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma, Lancet, 1: 131–134.PubMedCrossRefGoogle Scholar
  7. Bergsjø, P., and Evans, J.C., 1968, Tissue oxygen tension of cervix cancer, Acta radiol., 7: 1–11.Google Scholar
  8. Bergsjø, P., and Evans, J.C., 1971, Oxygen tension of cervical carcinoma during the early phase of external irradiation, Scand. J. clin. Lab. Invest., 27: 71–82.PubMedCrossRefGoogle Scholar
  9. Bergsjø, P., Christensen, O.J., and Kolstad, P., 1967, Oxygen tension in cancer of the cervix following administration of vasodilator drugs during oxygen inhalation, Cancer, 20: 1625–1634.PubMedCrossRefGoogle Scholar
  10. Bicher, H.I., Hetzel, F.W., Sandhu, T.S., Frinak, S., Vaupel, P., O’Hara, M.D., and O’Brien, T., 1980, Effects of hyperthermia on normal and tumor micro-environment, Radiology, 137: 523–530.PubMedGoogle Scholar
  11. Boneu, A., Bugat, R., Daly, N., Douchez, J., and Combes, P.F., 1977, Influence de l’heparinate de calcium sur la regression sous irridation d’adenopathies cervicales metastatiques, in.: Radiobiological Research and Radiotherapy (vol.2), IAEA, Vienna.Google Scholar
  12. Bru, A., Combes, P.F., Douchez, J., Lucot, H., and Ribot, J.F., 1970, Estimation de l’activité circulatoire a l’interieur des tumeurs ganglionnaires malignes par la mesure du taux d’eputation du xenon-133, in: Dynamic studies with radioisotopes in medicine, IAEA, Vienna.Google Scholar
  13. Cater, D.B., Silver, I. A., 1960, Quantitative measurements of oxygen tension in normal tissues and in the tumours of patients before and after radiotherapy, Acta radiol., 53: 233–256.PubMedCrossRefGoogle Scholar
  14. Colston, J., Fjeldsteel, A.H., and Dawson, P.J., 1981, Growth and regression of human tumor cell lines in congenitally athymic (rnu/rnu) rats, J. Natl. Cancer Inst., 66: 843–848.PubMedGoogle Scholar
  15. Endrich, B., 1984, Mikrozirkulation maligner Tumoren, Habilitationsschrift der Medizinischen Fakultät, Heidelberg.Google Scholar
  16. Evans, N.T.S., and Naylor, P.F.D., 1963, The effect of O2 breathing and radiotherapy upon the tissue oxygen tension of some human tumours, Brit. J. Radiol., 36: 418–425.CrossRefGoogle Scholar
  17. Festing, M.F.W., 1981, The Rowett athymic nude rat, in: Thymusaplastic nude mice and rats in clinical oncology, G.B. Bastert et al., eds., G. Fischer Verlag, Stuttgart, New York.Google Scholar
  18. Festing, M.F.W., May, D., Connors, T.A., Lovell, D., and Sparrow, S., 1978, An athymic nude mutation in the rat, Nature, 274: 365–366.PubMedCrossRefGoogle Scholar
  19. Fortmeyer, H.P., and Bastert, G., 1981, Breeding and main-tainance of nu/nu mice and rnu/rnu rats, In: Thymus-aplastic nude mice and rats in clinical oncology, G.B. Bastert et al., eds., G. Fischer Verlag, Stuttgart, New York.Google Scholar
  20. Giovanella, B.C., Stehlin, J.S., and Coil, D., 1984,Google Scholar
  21. Human tumors heterotransplanted in nude mice and rats, Exptl. Cell Biol. 52: 76–79.Google Scholar
  22. Grantham, F.H., Hill, D.M., and Gullino, P.M., 1973, Primary mammary tumors connected to the host by a sinale artery and vein, J. Natl. Cancer Inst., 50: 1381–1383.PubMedGoogle Scholar
  23. Inch, W.R. 1954, Direct current potential and pH of several varieties of skin neoplasms, Can. J. Biochem. Physiol., 32: 519–525.PubMedCrossRefGoogle Scholar
  24. Ito, M., Lammertsma, A.A., Wise, R.J.S., Bernardi, S., Frackowiak, R.S.J., Heather, J.D., McKenzie, CG., Thomas, D.G.T., and Jones, T., 1982, Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumours using 15–0 and positron emission tomography: analytical techniques and preliminary results, Neuroradiol., 23: 63–74.CrossRefGoogle Scholar
  25. Jamieson, D., and van den Brenk, H.A.S., 1965, Oxygen tension in human malignant disease under hyperbaric conditions, Brit. J. Cancer, 19: 139–150.PubMedCrossRefGoogle Scholar
  26. Johnson, R., 1976, A thermodynamic method for investigation of radiation induced changes in the microcirculation of human tumors, Int.J. Radiat. Oncol. Biol. Phys., 1: 659–670.PubMedCrossRefGoogle Scholar
  27. Kolstad, P., 1968, Intercapillary distance, oxygen tension and local recurrence in cervix cancer, Scand. J. clin. Lab.Invest., 22 (Suppl. 106): 145–157.Google Scholar
  28. Mäntylä, M., 1979, Regional blood flow in human tumors, Cancer Res., 39: 2304–2306.PubMedGoogle Scholar
  29. Mäntylä, M., Kuikka, J., and Rekonen, A., 1976, Regional blood flow in human tumours with special reference to the effect of radiotherapy, Brit. J. Radiol., 49: 335–338.PubMedCrossRefGoogle Scholar
  30. Mäntylä, M., Toivanen, J.T., Pitkänen, M.A., and Rekonen, A.H., 1982, Radiation- induced changes in regional blood flow in human tumors, Int. J. Radiât. Oncol. Biol. Phys., 8: 1711–1717.PubMedCrossRefGoogle Scholar
  31. Meyer, K.A., Kammerling, E.M., Amtman, L., Koller, M.,and Hoffman, S. J., 1948, pH studies of malignant tissues in human beings, Cancer Res., 8: 513–518.PubMedGoogle Scholar
  32. Millet, H., 1928, Measurements of the pH of normal, fetal, and neoplastic tissues by means of the glass electrode, J. biol. Chem., 78: 281–288.Google Scholar
  33. Mueller- Klieser, W., Vaupel, P., Manz, R., and Schmid-seder, R., 1981, Intracapillary oxyhemoglobin saturation of malignant tumors in humans, Int. J. Radiat. Oncol. Biol. Phys., 7: 1397–1404.PubMedCrossRefGoogle Scholar
  34. Mundinger, F., and Hahn, K., 1972, Direct measurement of the partial oxygen tension in different cortical and subcortical structures of the brain and in gliomas during stereotactic operation, Confin. neurol., 34: 106–111.CrossRefGoogle Scholar
  35. Naeslund, J., and Swenson, K.E., 1953, Investigations on the pH of malignant tumours in mice and humans after the administration of glucose, Acta. Obstet. Gynecol. Scand., 32: 359–367.PubMedCrossRefGoogle Scholar
  36. Nyström, C., Forssman, L., and Roos, B., 1969, Myometrial blood flow studies in carcinoma of the corpus uteri, Acta Radiol. Ther. Phys. Biol., 8: 193–198PubMedGoogle Scholar
  37. Pampus, F., 1963, Die Wasserstoffionenkonzentration des Hirngewebes bei raumfordernden intracraniellen Prozessen, Acta neurochir., 11: 305–318.CrossRefGoogle Scholar
  38. Pappova, N., Siracka, E., Vacek, A., and Durkovsky, J., 1982, Oxygen tension and prediction of the radiation response. Polarographic study in human breast cancer, Neoplasma, 29: 669–674.PubMedGoogle Scholar
  39. Peterson, H.I. (ed.), 1979, Tumor blood circulation -Angiogenesis, vascular morphology and blood flow of experimental and human tumors, CRC press, Boca Raton.Google Scholar
  40. Salomon, J.C., Lynch, N., and Prin, J., 1980, Graft susceptibility of nude rats and mice to animal and human tumors and to hybrid cell lines, in: Immunodeficient animals in cancer research, H. Sparrow, ed., Macmil-lan, New York.Google Scholar
  41. Sauer, L.A., Stayman, J.W., and Dauchy, R.T., 1982, Amino acid, glucose, and lactic acid utilization in vivo by rat tumors, Cancer Res., 42: 4090–4097.PubMedGoogle Scholar
  42. Stark, M., and Schlipköter, H.W., 1981, The heterogeneity of human bronchogenic carcinomas in in-vitro and in-vivo models of the nu/nu mouse and rnu/rnu rat, in: Thymusaplastic nude mice and rats in clinical oncology, G.B. Bastert et al., eds., G. Fischer Verlag, Stuttgart, New York.Google Scholar
  43. Steel, G.G., 1977, Growth kinetics of tumours, Clarendon Press, Oxford.Google Scholar
  44. Steinau, H.U., Bastert, G., Eichholz, H., Fortmeyer, H.P., and Schmidt- Matthiesen, H., 1981, Epigastric pouching technique — human xenografts in rnu/rnu rats, in: Thymusaplastic nude mice and rats in clinical oncology, G.B. Basert et al., eds., G. Fischer Verlag, Stuttgart, New York.Google Scholar
  45. Stragand, J.J., Drewinko, B., Henderson, S.D., Grossie, B., Stephens, L.C., Barlogie, B., and Trujillo, J.M., 1982, Growth characteristics of human colonic adenocarcinomas propagated in the Rowett athymic rat, Cancer Res.”, 42: 3111–3115.PubMedGoogle Scholar
  46. Tanaka, Y., 1974, Regional tumor blood flow and radio-sensitivity, in: Fraction size in radiobiology and radiotherapy, T. Sugahara et al., eds., Urban & Schwarzenberg, München.Google Scholar
  47. Urbach, F., 1956, Pathophysiology of Malignancy.I. Tissue oxygen tension of benign and malignant tumors of the skin, Proc. Soc. Exptl. Biol. Med., 92: 644–649.Google Scholar
  48. Urbach, F., and Noell, W.K., 1958, Effects of oxygen breathing on tumor oxygen measured polarographically, J. Appl. Physiol., 13: 61–65.PubMedGoogle Scholar
  49. Van den Berg, A.P., Wike- Hooley, J.L., van den Berg-Blok, A.E., van der Zee, J., and Reinhold, H.S., 1982, Tumour pH in human mammary carcinoma, Eur. J. Cancer Clin. Oncol., 18: 457–462.PubMedCrossRefGoogle Scholar
  50. Vaupel, P., 1982, Pathophysiologie der Durchblutung maligner Tumoren, Funktionsanalyse biolog. Systeme, 8: 155–170.Google Scholar
  51. Wendung, P., Manz, R., Thews, G., and Vaupel, P., 1984, Heterogeneous oxygenation of rectal carcinomas in humans — a critical parameter for preoperative irradiation, Advanc. Exptl. Med. Biol., in press.Google Scholar
  52. Wike- Hooley, J.L., van der Zee, J., van Rhoon, G., van den Berg, A.P., and Reinhold, H.S., 1984, Human tumour pH changes following hyperthermia and radiation therapy, Eur. J. Cancer Clin. Oncol., 20: 619–623.PubMedCrossRefGoogle Scholar
  53. Williams, R.D., Matsumoto, T., and Dombrovskis, S., 1984, Progressive growth of human genitourinary cancer cell lines in young nude rats, Expl. Cell Biol., 52:80–84.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. Vaupel
    • 1
  • F. Kallinowski
    • 1
  • S. Dave
    • 1
  • H. Gabbert
    • 2
  • G. Bastert
    • 3
  1. 1.Dept. Applied PhysiologyUniversity of MainzMainzGermany
  2. 2.Dept. PathologyUniversity of MainzMainzGermany
  3. 3.Dept. Gynaecology and ObstetricsUniversity of FrankfurtFrankfurt/MainGermany

Personalised recommendations