Advertisement

The Effect of Physically Dissolved Oxygen on the \(P_{CO_2 }\) in Venous Blood and in Brain Tissue

  • J. H. G. M. van Beek
  • J. DeGoede
  • A. Berkenbosch
  • C. N. Olievier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)

Abstract

The transport of CO2 from tissue is influenced by oxygen through changes in tissue blood flow and in the magnitude of the Haldane effect, even when the arterial CO2 tension is kept constant. The increase in ventilation following hyperbaric O2 breathing, seen in human beings, has been ascribed to the increase in CO2 tension at the central chemosensitive structures which results from these effects of O2 on CO2 transport (Lambertsen et al., 1953). In this paper we develop a simple mathematical model for CO2 transport from tissue which incorporates the influences of O2 on CO2 transport. The changes in CO2 tension due to the reduction of the Haldane effect by physically dissolved O2 during hyperoxia are calculated and compared with measurements of venous and cerebrospinal fluid CO2 tensions.

Keywords

Tissue Blood Flow Haldane Effect Specific Blood Flow Krogh Cylinder Haemoglobin Total Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, H., and Harms, H., 1959, Sauerstoffsdissoziationskurven des Bluttes von Säugetieren, Pflügers Archiv., 268: 334–365.PubMedCrossRefGoogle Scholar
  2. Gesell, R., 1923, On the chemical regulation of respiration. I. The regulation of respiration with special reference to the metabolism of the respiratory center and the coordination of the dual function of hemoglobin, Am. J. Physiol., 66: 5–49.Google Scholar
  3. Lambertsen, C.J., 1965, Effects of oxygen at high partial pressure, in: “Handbook of Physiology. Section 3: Respiration, Vol. II,” W.O. Fenn and H. Rahn, eds., American Physiological Society, Washington.Google Scholar
  4. Lambertsen, C.J., Kough, R.H., Cooper, D.Y., Emmel, G.L., Loeschcke, H.H., and Schmidt, C.F., 1953, Oxygen toxicity. Effects in man of oxygen inhalation at 1 and 3.5. atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism, J. Appl. Physiol., 5: 471–486.PubMedGoogle Scholar
  5. Loeppky, J.A., Luft, U.C. and Fletcher, E.R., 1983, Quantitative description of whole blood CO2 dissociation curve and Haldane effect, Respir. Physiol., 51: 167–181.PubMedCrossRefGoogle Scholar
  6. Olievier, C.N., Berkenbosch, A., van Beek, J.H.G.M., de Goede, J., and Quanjer, Ph.H., 1982, Hypoxia, cerebrospinal fluid PCO2 and central depression of ventilation, Bull. Eur. Physiopath. Respir., 18 (Suppl. 4): 165–172.Google Scholar
  7. Pontén, U. and Siesjö, B.K., 1966, Gradients of CO2 tension in the brain, Acta Physiol. Scand., 67: 129–140.PubMedCrossRefGoogle Scholar
  8. Siesjö, B.K., 1978, “Brain Energy Metabolism,” John Wiley, Chichester.Google Scholar
  9. Visser, B.F., 1960, Pulmonary diffusion of carbon dioxide, Physics in Medicine and Biology, 5: 155–166.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. H. G. M. van Beek
    • 2
  • J. DeGoede
    • 1
  • A. Berkenbosch
    • 1
  • C. N. Olievier
    • 1
  1. 1.Laboratory of PhysiologyUniversity Medical CentreLeidenThe Netherlands
  2. 2.Laboratory for PhysiologyFree UniversityAmsterdamThe Netherlands

Personalised recommendations