Convection/Diffusion Interactions in Oxygen Transport: Effect of Flow Reversal in Lung Airways

  • Hugh D. Van Liew
  • Kenneth R. Murray
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)


Transport of oxygen to alveoli through the airway tree and to tissues through the vascular arborization both involve convection in large vessels followed by diffusion to the final 02 sink. At the transition between convection and diffusion, there is a steep drop of 02 concentration in the flowing medium. Gas in airways differs from the blood in that flow is bidirectional. We use a relatively simple computer model to demonstrate behavior of the steep drop when flow changes direction at end-inspiration.


Functional Residual Capacity Inspiratory Flow Airway Tree Steep Drop Lung Airway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, L. G., Ultman, J. S., and Rhoades, R. A., 1974, Simultaneous gas flow and diffusion in a symmetric airway system: a mathematical model, Respir, Physiol., 21:119.CrossRefGoogle Scholar
  2. Cumming, G., Crank, J., Horsfield, K., and Parker, I., 1966, Gaseous diffusion in the airways of the human lung, Respir. Physiol., 1:58.PubMedCrossRefGoogle Scholar
  3. Cumming, G., Horsfield, K., and Preston, S. B., 1971, Diffusion equilibrium in the lungs examined by nodal analysis, Respir, Physiol., 12:329.CrossRefGoogle Scholar
  4. Engel, L. A., Paiva, M., Siegler, D. I. M., and Fukuchi, Y., 1979, Dual tracer single breath studies of gas transport in the lung, Respir. Physiol., 36:103.PubMedCrossRefGoogle Scholar
  5. Engel, L. A., Wood, L. D. H., Utz, G., and Macklem, P. T., 1973, Gas mixing during inspiration, J. Appl. Physiol., 35:18.PubMedGoogle Scholar
  6. LaForce, R. C., and Lewis, B. M., 1970, Diffusional transport in the human lung, J. APPl. Physiol., 28:291.Google Scholar
  7. Okubo, T., and Piiper, J., 1974, Intrapulmonary gas mixing in excised dog lung lobes studied by simultaneous wash-out of two inert gases, Respir. Physiol., 21:223.PubMedCrossRefGoogle Scholar
  8. Pack, A., Hooper, M. B., Nixon, W., and Taylor J. C., 1977, A computational model of pulmonary gas transport incorporating effective diffusion, Respir. Physiol., 29:101.PubMedCrossRefGoogle Scholar
  9. Paiva, M., 1973, Gas transport in the human lung, J. Appl. Physiol., 35:401.PubMedGoogle Scholar
  10. Paiva, M., Lacquet, L. M., and van der Linden, L. P., 1976, Gas transport in a model derived from Hansen-Ampaya anatomical data of the human lung, J. Adpl. Physiol., 41:115.Google Scholar
  11. Scherer, P. W., Shendalman, L. H., and Greene, N. M., 1972, Simultaneous diffusion and convection in single breath lung washout, Bull. Math. Biophys., 34:393.PubMedCrossRefGoogle Scholar
  12. Sikand, R. S., Magnussen, H., Scheid, P., and Piiper, J., 1976, Convective and diffusive gas mixing in human lungs: experiments and model analysis, J. Appl. Physiol., 40:362.PubMedGoogle Scholar
  13. Van Liew, H. D., Thalmann, E. D., and Sponholtz, D. K., 1981, Hindrance to diffusive gas mixing in the lung in hyperbaric environments, J. Appl. Physiol., 51:243.PubMedGoogle Scholar
  14. Weibel, E. R., 1963, “Morphometry of the Human Lung,” Springer-Verlag, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Hugh D. Van Liew
    • 1
  • Kenneth R. Murray
    • 1
  1. 1.Department of PhysiologyUniversity at Buffalo, SUNYBuffaloUSA

Personalised recommendations