Reticulocytosis and Bone Marrow cAMP Level in Rats Following Physical Exercises

  • Z. Szygula
  • Z. Dabrowski
  • R. Kubica
  • H. Miszta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)


In the course of intensive physical exercises the blood serum erythropoietin level becomes elevated 16,21. Erythropoietin, being a protein hormone of a big molecular weight, does not penetrate the target cell, but is bound by a surface receptor 15 and affects the processes occurring within the erythropoietin-sensitive cell according to the generally accepted theory of the “second messenger”. As it has been demonstrated2,5,7 erythropoietin triggers an increase of cAMP in the bone marrow cells. On the other hand, an elevation in the intracellular cAMP concentration has been shown to stimulate erythropoiesis in vitro.


Physical Exercise cAMP Level Reticulocyte Count Single Exercise Young Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Gegemann and H.G. Harwerth, “Praktische Hämatologie”, George Thieme Verlag, Stuttgart (1974).Google Scholar
  2. 2.
    J.E. Brown and J.W. Adamson, Studies of the influence of cyclic nucleotides on in vitro haemoglobin synthesis, Brit. J. Haematol., 35:193 (1977).CrossRefGoogle Scholar
  3. 3.
    Z. Brzezinska, W. Kowalski and K. Nazar, Activity of the adrenergic system during prolonged running in dogs, Acta Physiol.Pol., 24:339 (1973).PubMedGoogle Scholar
  4. 4.
    J.W. Byron, Evidence for a β -adrenergic receptor initiating DNA synthesis in haemopoietic stem cells, Exptl.Cell.Res., 71:228 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    F. Chiuini, G. Della Tore, G. Fano and A. Viti, Early increase of cyclic adenosine monophosphate level induced by erythropoietin on rabbit bone marrow cell suspensions, Acta Haematol., 61:251 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    Z. Dabrowski, Z. Szygula and H. Miszta, Do changes in bone marrow pressure contribute to the egress of cells from bone marrow?, Acta Physiol.Pol., 32:729 (1981).PubMedGoogle Scholar
  7. 7.
    G. Della Tore, G. Fano and G. Menchetti, cAMP-cGMP ratio and Hb concentration in rabbit bone marrow cells stimulated by erythroproietin and NaF, IRCS Medical Sci., 9:344 (1981).Google Scholar
  8. 8.
    T. Ganchev, The influence of isoprenaline beta-adrenergic stimulation on erythropoiesis in white rats, Agressologie, 16:301 (1975).PubMedGoogle Scholar
  9. 9.
    A.G. Gilman, A protein binding assay for adenosine 3′: 5′-cyclic monophosphate, Proc.Natl.Acad.Sci.U.S., 67:305 (1970).CrossRefGoogle Scholar
  10. 10.
    D. Gorshein, E.H. Reisner Jr. and F.H. Graber, Tissue culture of bone marrow. V. Effect of 5 β /H/ steroids and cyclic AMP on heme synthesis, Am.J.Physiol., 228:1024 (1975).PubMedGoogle Scholar
  11. 11.
    P.M. Gross, D.D. Heistad and M.L. Marcus, Neurohumoral regulation of blood flow to bones and marrow, Am.J.Physiol., 237:H440 (1979).PubMedGoogle Scholar
  12. 12.
    W. Kindermann, A. Schnabel, W.M. Schmitt, G. Biro, J. Cassens and F. Weber, Catecholamines, growth hormone, Cortisol, insulin and sex hormones in anaerobic and aerobic exercise, Eur.J.Appl. Physiol., 49:289 (1982).CrossRefGoogle Scholar
  13. 13.
    V. Koivisto, R. Hendler, E. Nadel and Ph. Felig, Influence of physical training on the fuel — hormone response to prolonged low intensity exercise, Metabolism, 31:192 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Kolena and C.P. Channing, Stimulatory effects of LH, FSH, and Prostaglandins upon cyclic 3′, 5′ — AMP levels in porcine gran-dulosa cells, Endocrinology, 90:1543 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    M.D. Lafferty, G.A. Ackerman, Ch.D.R. Dunn and R.D. Lange, Ultrastructural, immunocytochemical localisation of presumptive erythtropoietin binding sites on developing erythrocytic cells of normal human bone marrow, J.Histochem.Cytochem., 29:49 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Lindemann, R. Ekanger, P.K. Opstad, M. Nummestad and R. Ljosland, Hematological changes in normal men during prolonged severe exercise, Amer.Corr.Ther.J., 37:107 (1978).Google Scholar
  17. 17.
    M. Pawlikowski and J. Lewandowski, Cyclic adenosine 3′, 5′ -- monophosphate as the intracellular mediator of hormonal action, Endokrynol. Polska, 24:105 (1973).Google Scholar
  18. 18.
    Z. Szygula, K. Spodaryk, Z. Dabrowski and H. Miszta, Post-effort anaemia and hemolytic phenomena during physical exercises, (in press).Google Scholar
  19. 19.
    K.C. Tovey, K.G. Oldham and J.A.M. Whelan, A simple direst assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique, Clinica Chemica Acta, 56:221 (1974).CrossRefGoogle Scholar
  20. 20.
    J.E. Wilkerson, S.M. Horvath and B. Gutin, Plasma testosterone during treadmill exercise, J.Appl.Physiol.:Resp., Environ. Exercise Physiol., 49:249 (1980).Google Scholar
  21. 21.
    J. Zivny, J. Neuwirt and T. Travnicek, The effect of lactic acid on erythropoietin production and the rate of disappearance of erythropoietin from rat plasma during exercise, Life Sciences, 10:11 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Z. Szygula
    • 1
  • Z. Dabrowski
    • 2
  • R. Kubica
    • 3
  • H. Miszta
    • 2
  1. 1.Department of Sport MedicineAkademy of Physical EducationKrakowPoland
  2. 2.Laboratory of Animal Physiology and Toxicology, Department of Animal Physiology, Institute of ZoologyJagiellonian UniversityKrakowPoland
  3. 3.Department of Physiology and BiochemistryAcademy of Physical EducationKrakowPoland

Personalised recommendations