Advertisement

Blood Gas Transport and 2,3-DPG

  • Jerry H. Meldon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)

Abstract

Since the discovery of the sensitivity of oxygen-hemoglobin interaction to the concentration of red cell 2,3-diphosphoglycerate (Benesch and Benesch, 1967; Chanutin and Curnish, 1967), a great number of investigators have explored its biochemical, physiological and clinical ramifications. The following is a brief overview of this work, with particular emphasis upon the role of DPG in blood oxygen transport in health and disease.

Keywords

Oxygen Affinity Capillary Recruitment Oxyhemoglobin Dissociation Curve Blood Oxygen Transport Bohr Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apstein, C. S., Dennis, R. C., Briggs, L., Vogel, W. M., Frazer, J., and Valeri, C. R., 1984, Effect of red blood cell storage on cardiac performance: Improved myocardial oxygen delivery and function during constant flow coronary perfusion with low oxy-hemoglobin affinity human red blood cells in normothermic and hypothermic rabbit hearts, Office of Naval Research, Contract N0014–79-C-0168, Technical Report No. 83–01.Google Scholar
  2. Arturson, G., Garby, L., Robert, M. and Zaar, B., 1974, The O2 dissociation curve of normal human blood with special reference to the influence of physiological effector ligands, Scand. J. clin. Lab. Invest., 34:9.PubMedCrossRefGoogle Scholar
  3. Astrup, P., Rørth, M., and Thorshauge, C., 1970, Dependency on acid-base status of oxyhemoglobin dissociation and 2,3-diphosphoglycerate level in human erythrocytes. II. In vivo studies, Scand. J. clin. Lab. Invest., 26:47.PubMedCrossRefGoogle Scholar
  4. Baldwin, J. M., 1975, Structure and function of hemoglobin, Prog. Biophys. Molec. Biol., 29:225.Google Scholar
  5. Bauer, C., 1970, Reduction of the carbon dioxide affinity of human hemoglobin solutions by 2,3-diphosphoglycerate, Resp. Physiol., 10:10.CrossRefGoogle Scholar
  6. Bauer, C., Klocke, R. A., Kamp, D., and Forster, R. E., 1973, Effect of 2,3-diphosphoglycerate and H+ on the reaction of O2 and hemoglobin, Am. J. Physiol., 224:838.PubMedGoogle Scholar
  7. Benesch, R. and Benesch, R. E., 1967, The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin, Biochem. Biophys. Res. Commun., 26:162.PubMedCrossRefGoogle Scholar
  8. Chanutin, A. and Curnish, P., 1967, Effect of organic and inorganic phosphate on the oxygen equilibrium of human erythrocytes, Arch. Biochem. Biophys., 121:96.PubMedCrossRefGoogle Scholar
  9. Deuticke, B., Duhm, J., and Dierkesmann, R.,1971, Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: Influence on glycolytic metabolism and intracellular pH, Pflugers Arch., 326:15.PubMedCrossRefGoogle Scholar
  10. Duhm, J., 1971, Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes, Pflugers Arch., 326:341.PubMedCrossRefGoogle Scholar
  11. Duhm, J., 1976, Influence of 2,3-diphosphoglycerate on the buffering properties of human blood. Role of the red cell membrane, Pflugers Arch., 363:61.PubMedCrossRefGoogle Scholar
  12. Duhm, J. and Gerlach, E.,1971, On the mechanism of the hypoxia-induced increase of 2,3-diphosphoglycerate in erythrocytes, Pflugers Arch., 326:254.PubMedCrossRefGoogle Scholar
  13. Ellis, C. G., Potter, R. F., and Groom, A.C.,1983, The Krogh cylinder is not appropriate for modelling O2 transport in contracted skeletal muscle, Adv. Exper. Med. Biol., 159:253.CrossRefGoogle Scholar
  14. Harken, A. H., 1977, The surgical significance of the oxyhemoglobin dissociation curve, Surg. Gynec. Obstet., 144:935.PubMedGoogle Scholar
  15. Hlastala, M. P. and Woodson, R. C., 1983, Bohr effect data for blood gas calculations, J. Appl. Physiol., 55:1002.PubMedGoogle Scholar
  16. Honig, C. R., Gayeski, R. E. J. Federspiel, W., Clark, A. Jr., and Clark, P., 1984, Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities, Adv. Exper. Med. Biol., 169:23.CrossRefGoogle Scholar
  17. Kilmartin, J.V. and Rossi-Bernardi, L., 1973, Interaction of hemoglobin with hydrogen ions, carbon dioxide and organic phosphates, Physiol. Rev., 53:836.PubMedGoogle Scholar
  18. Lichtman, M. A., Murphy, M. S., Whitbeck, A. A., and Kearney, E, A., 1974, Oxygen binding to haemoglobin in subjects with hypoproliferative anaemia, with and without chronic renal disease: Role of pH, Brit. J. Haemat., 27:439.PubMedCrossRefGoogle Scholar
  19. Minakami, S. and Yoshikawa, H., 1966, Studies on erythrocyte glycolysis. III. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis, J. Biochem. (Tokyo), 59:145.Google Scholar
  20. Nylander, E., Lund, N. and Wranne, B., 1983, Effect of increased blood oxygen affinity on skeletal muscle surface oxygen pressure fields, J. Appl. Physiol., 54:99.PubMedGoogle Scholar
  21. Ross, B. K. and Hlastala, M. P., 1981, Increased hemoglobin-oxygen affinity does not decrease skeletal muscle oxygen consumption, J. Appl. Physiol., 51:864.PubMedGoogle Scholar
  22. Salhany, J. M., Eliot, R. S., and Mizukami, H., 1970, The effect of 2,3-diphosphoglycerate on the kinetics of deoxygenation of human hemoglobin, Biochem. Biophys. Res. Commun., 39:1052.PubMedCrossRefGoogle Scholar
  23. Samaja, M., Mosca, A., Luzzana, M., Rossi-Bernardi, L., and Winslow, R., 1981, Equations and nomogram for the relationship of human blood p50 to 2,3-diphosphoglycerate, CO2 and H+, Clin. Chem., 27:1856.PubMedGoogle Scholar
  24. Samaja, M. and Winslow, R., 1979, The separate effects of H+ and 2,3-DPG on the oxygen equilibrium curve of human blood, Brit. J. Haemat., 41:373.PubMedCrossRefGoogle Scholar
  25. Siggaard-Andersen, O.., 1974, “The Acid-Base Status of the Blood,” Munskgaard, Copenhagen.Google Scholar
  26. Soulard, C. D., Teisscire, B. P., TeisScire, L. J., and Herigault, R. A., 1983, Consequences of an acute increase in p50 in anaesthetized guinea pigs, Respir. Physiol., 51:21.PubMedCrossRefGoogle Scholar
  27. Valeri, C. R., 1984, Clinical importance of the oxygen transport function of preserved red blood cells, in: “Proc. 12th Katzir-Katchalsky meeting on oxygen transport by red blood cells”, Pergamon, Oxford, in press.Google Scholar
  28. Valeri, C. R. and Hirsch, N. M., 1969, Restoration in vivo of erythrocyte adenosine triphosphate, 2,3-diphosphoglycerate, potassium ion and sodium ion concentration following transfusion of acid-citrate-dextrose-stored human red blood cells, J. Lab. Clin. Med., 73:722.PubMedGoogle Scholar
  29. Winslow, R. M., Samaja, M., Winslow, N. J«, Rossi-Bernardi, L., and Shrager, R. I., 1983, Simulation of continuous blood O2 equilibrium curve over physiological pH, DPG and pC02 range, J. Appl. Physiol., 54:524.PubMedCrossRefGoogle Scholar
  30. Woodson, R. D. and Auerbach, S., 1982, Effect of increased oxygen affinity and anemia on cardiac output and its distribution, J. Appl. Physiol., 53:1299.PubMedGoogle Scholar
  31. Woodson, R. D., Fitzpatrick, J. H. Jr., Costello, D. J., and Gilboe, D. D., 1982, Increased brain oxygen affinity decreases canine brain oxygen consumption, J. Lab. Clin. Med., 100:411.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jerry H. Meldon
    • 1
  1. 1.Chemical Engineering DepartmentTufts UniversityMedfordUSA

Personalised recommendations