Advertisement

O2 and CO2 Solubility of the Fluorocarbon Emulsion Fluosol-DA 20% and O2 and CO2 Dissociation Curves of Blood — Fluosol-DA 20% Mixtures

  • J. Grote
  • K. Steuer
  • R. Müller
  • C. Söntgerath
  • K. Zimmer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)

Abstract

Since perfluorochemicals are characterized by a high solubility for gases, emulsions of per fluorinated compounds have been proposed as artificial blood substitutes (Clark and Gollan, 1966; Naito and Yokoyama, 1978; Beisbarth and Suyama, 1982; Geyer, 1982, 1983). Among the different perfluorochemicals investigated, Fluosol-DA 20% (FDA20) has been used successfully as an O2 transport medium and plasma expander for different experimental animals and for humans. Our knowledge of respiratory gas transport of FDA20 and blood-FDA20 mixtures is, however, mainly based on theoretical investigations and calculations, which have been derived from separate data for blood and FDA20, and presumes that the fluorocarbon emulsion does not affect the O2-affinity of hemoglobin or the acid-base status of blood. In addition, calculations and measurements of the O2 solubility in the two Fluosol emulsions (FDA20 and FDA35) have resulted in disagreement (Naito and Yokoyama, 1978; Zander and Makowski, 1982).

Keywords

Lactic Acid Hemoglobin Concentration Dissociation Curve Equilibration Line Lactic Acid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup, P., 1956, Scand. J. clin. Lab. Invest., 8: 33–43PubMedCrossRefGoogle Scholar
  2. Austin, W.H., Lacombe, E., Rand, P.W., and Chatterjee, M., 1963, J.Appl.Physiol. ,18: 301–304PubMedGoogle Scholar
  3. Bartels, H., and Wrbitzky, R., 1960, Pflügers Arch., 271: 162–168CrossRefGoogle Scholar
  4. Beisbarth, H., and Suyama, T., 1982, in: Frey, R., Beis-barth, H., Stosseck, K. (eds.) Oxygen carrying colloidal blood substitutes. Zuckschwerdt, München, pp. 3–12Google Scholar
  5. Castaing, M., and Pocidalo, J.J., 1979, Respir.Physio 1., 38: 243–256CrossRefGoogle Scholar
  6. Clark, L.C., and Gollan, F., 1966, Science, 152: 1755–1756PubMedCrossRefGoogle Scholar
  7. Gertz, K.H., and Loeschcke, H.H., 1954, Z. Naturforsch., 9b: 1–9Google Scholar
  8. Geyer, R.P., 1982, in: Frey, R., Beisbarth, H., Stosseck, K.(eds.) Oxygen carrying colloidal blood substitutes. Zuckschwerdt, München, pp. 19–29Google Scholar
  9. Geyer, R.P., 1983, in: Bolin, R.B., Geyer, R.P., Nemo, G.J.(eds.) Advances in blood substitute research. Progr.Clin.Biol.Res., vol. 122. Liss, New York, pp. 157–168Google Scholar
  10. Grote, J., 1967, Pflügers Arch., 296: 202–211CrossRefGoogle Scholar
  11. Grote, J., 1971, in: Thews, G.(ed.) Nomogramme zum Säure-Basen-Status des Blutes und zum Atemgastransport, Anaesthesiology and Resuscitation, vol. 53. Springer, Berlin, Heidelberg, New York, pp. 47–83CrossRefGoogle Scholar
  12. Grote, J., and Söndgen, W., 1976, Pflügers Arch., 365: R22Google Scholar
  13. Harms, H., and Bartels, H., 1961, Pflügers Arch., 272: 384–392CrossRefGoogle Scholar
  14. Loeppky, J.A., Luft, U.C., and Fletcher, E.R., 1983, Respir. Physiol., 51: 167–181PubMedCrossRefGoogle Scholar
  15. von Mengden, H.-J., Schultehinrichs, D., and Thews, G., 1969, Respir.Physiol., 6: 151–159CrossRefGoogle Scholar
  16. Mochizuki, M., Tazawa, H., and Tamura, M., 1982, Jpn.J. Physiol., 32: 231–244PubMedCrossRefGoogle Scholar
  17. Naito, R., and Yokoyama, K., 1978, Perfluorochemical blood substitutes. Techn.Inform.Series No.5, Green Cross Corporation.Google Scholar
  18. Osaka Power, G.G., 1968, J.Appl.Physio 1., 24: 468–474Google Scholar
  19. Rispens, P., Brunsting, J.R., Zock, J.P., and Zijlstra, W.G., 1973, J.Appl.Physiol., 34: 377–382PubMedGoogle Scholar
  20. Scholander, P.F., 1947, J.Biol.Chem., 167: 235–250PubMedGoogle Scholar
  21. Sendroy, J., Dillon, R.T., and van Slyke, D.D., 1934, J.Biol.Chem., 105: 597–632Google Scholar
  22. Severinghaus, J.W., 1966, J.Appl.Physiol., 21: 1108–1116PubMedGoogle Scholar
  23. Severinghaus, J.W., 1979, J.Appl.Physiol., 46: 599–602PubMedGoogle Scholar
  24. Siesjö, B.K., 1962, Acta physio1.scand., 55: 325–341CrossRefGoogle Scholar
  25. Siggaard-Andersen, O., 1974, The acid-base status of the blood. Munksgaard, Copenhagen, 4.th.ed.Google Scholar
  26. van Slyke, D.D., Sendroy, J., Hastings, A.B., and Neill, J.M ., 1928, J.Biol.Chem., 78: 765–799Google Scholar
  27. Zander, R., 1969, Pflügers Arch., 308: 127–136PubMedCrossRefGoogle Scholar
  28. Zander, R., and Makowski, H.V., 1982, in: Frey, R., Beisbarth, H., Stossek, K. (eds.) Oxygen carrying colloidal substitutes. Zuckschwerdt, München, pp. 131–141Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. Grote
    • 1
  • K. Steuer
    • 1
  • R. Müller
    • 1
  • C. Söntgerath
    • 1
  • K. Zimmer
    • 1
  1. 1.Institute of PhysiologyUniversity of BonnBonnGermany

Personalised recommendations