Skeletal Muscle Capillarity in Hyperthyroid and Hypothyroid Rats

  • A. H. Sillau
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)


The capacity of the oxygen transport system to deliver O2 to the muscle fibers depends, among other things, on the density and the geometric arrangement of the capillary network. Romanul (1965) and Myraghe (1978) have shown that the number of capillaries around the skeletal muscle fibers is directly correlated with the oxidative capacity of the fibers. On the other hand, Maxwell et al. (1980) and Zumstein et al. (1983) have presented evidence that runs counter to the above. Maxwell et al. (1980) studied different muscles from different animal species and muscle to muscle and species to species variability could have obscured the relationship between capillarity and oxidative capacity. In addition, both Maxwell et al. (1980) and Zumstein et al. (1983) reported their values of capillarity as capillary density and capillary to fiber ratio without taking into consideration the effect that fiber cross sectional area has on these parameters. It has been shown that this may lead to erroneous interpretations of the experimental results (Ripoll et al., 1979).


Diffusion Distance Oxidative Capacity Capillary Density Puerto Rico 00936 Fiber Cross Sectional Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P. and Henricksson, J. (1977). J. Physiol. 270:677.PubMedGoogle Scholar
  2. Aquin, L.; Sillau, A. H.; Lechner, A. J.; and Banchero, N. (1980). Microvasc. Res. 20:41.PubMedCrossRefGoogle Scholar
  3. Bassingthwaighte, J. B.; Yipintsoi, T. and Harvey R. B. (1974). Microvasc. Res. 7:229.PubMedCrossRefGoogle Scholar
  4. Brown, M. D.; Cotter, M. A.; Hudlicka, O. and Vrbova, G. (1976). Pflugers Arch. 361:241.PubMedCrossRefGoogle Scholar
  5. Ferguson-Miller, S.; Brautigan, D. and Margoliash, E. (1976). J. Biol. Chera. 251:1104.Google Scholar
  6. Hudlicka, O. (1982). Circulation Res. 50:451.PubMedCrossRefGoogle Scholar
  7. Kayar, S. R.; Lechner, A. J. and Banchero, N. (1982). Pflugers Arch. 394:124.PubMedCrossRefGoogle Scholar
  8. Maxwell, L. C.; White, T. P. and Faulkner, J. A. (1980). J. Appl. Physiol. 49:627.PubMedGoogle Scholar
  9. Myrhage, R. (1978). Acta Physiol. Scand. 103:19.PubMedCrossRefGoogle Scholar
  10. Rakusan, K. (1977). Methods Achiev. Exp. Pathol. 5: 272.Google Scholar
  11. Ripoll, E.; Sillau, A. H. and Banchero, N. (1979). Pflugers Arch. 380:153.PubMedCrossRefGoogle Scholar
  12. Romanul, F. C. A. (1965). Arch. Neurol. 12:497.PubMedCrossRefGoogle Scholar
  13. Sillau, A. H. and Banchero, N. (1977). Pflugers Arch. 369:269.PubMedCrossRefGoogle Scholar
  14. Sillau, A. H.; Aquin, L.; Lechner, A.; Bui, M. V. and Banchero, N. (1980). Respir. Physiol. 42:233.PubMedCrossRefGoogle Scholar
  15. Tenney, S. M. (1974). Respir. Physiol. 20:283.PubMedCrossRefGoogle Scholar
  16. Tomanek, R. J.; Searls, J. C. and Lachenbruch, P. A. (1982). Circulation Res. 51:295.PubMedCrossRefGoogle Scholar
  17. Weibel, E. R.; Kistler, G. S. and Scherle, W. F. (1966). J. Cell Biol. 30:23.PubMedCrossRefGoogle Scholar
  18. Winder, W. W.; Baldwin, K. M.; Terjung, R. L. and Holloszy, J. O. (1975). Am. J. Physiol. 228:1341.PubMedGoogle Scholar
  19. Winder, W. W. and Holloszy, J. O. (1977). Am. J. Physiol. 232: C180.PubMedGoogle Scholar
  20. Zerbe, G. O., Archer, P. G.; Banchero, N. and Lechner, A. J. (1982). Am. J. Physiol. 242:R178.PubMedGoogle Scholar
  21. Zumstein, A.; Matnier, O.; Howald, H. and Hoppeler, H. (1983). Pflugers Arch. 397:277.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • A. H. Sillau
    • 1
  1. 1.Department of Physiology and Biophysics School of MedicineUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations