Oxygen Supply to Hypothermic Isolated Working Heart During Blood Acid-Base Changes

  • M. Sinet
  • M. Muffat-Joly
  • D. Henzel
  • J. J. Pocidalo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)


Alterations of thermal state induce changes in oxygen transport as a consequence of shifting metabolic demand, modifications of acid-base parameters and changes in blood oxygen affinity. It is now recognized that, when temperature is modified, variation in pH of biological fluids parallels modifications in the neutral point of water which is temperature dependent1,2. Therefore, pH adjustment, when organs from homeotherms are subjected to hypothermia as presently practiced in cardiac surgery or organ preservation, is justified.


Coronary Flow Aortic Flow External Work Neutral Water Cardiac Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Rahn, R. B. Reeves and B. J. Howell, Hydrogen ion regulation, temperature and evolution, Am. Rev. Resp. Dis. 112:165 (1975).PubMedGoogle Scholar
  2. 2.
    R. B. Reeves, An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs, Respir. Physiol. 14:219 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    M. A. Duvelleroy, M. Duruble, J. L. Martin, B. Teisseire, J. Droulez and M. Cain, Blood perfused working isolated rat heart, J. Appl. Physiol. 41:603 (1976).PubMedGoogle Scholar
  4. 4.
    M. Sinet, M. Muffat-Joly, D. Henzel, G. Renault and J. J. Pocidalo, Performance of hypothermic isolated rat heart at various levels of blood acid-base status, J. Appl. Physiol.: Resp. Environ. Exercise Physiol. 56: 1526 (1984).Google Scholar
  5. 5.
    R. C. Weast, S. M. Selby and C. D. Hodgman, “Handbook of Chemistry and Physics”, Cleveland OH (1964).Google Scholar
  6. 6.
    J. L. Martin, M. Duvelleroy, B. Teisseire and M. Duruble, Effect of an increase in HbO2 affinity on the calculated capillary recruitment of an isolated rat heart, Pfluegers Arch. 382:57 (1979).CrossRefGoogle Scholar
  7. 7.
    N. C. Gonzalez, R. L. Clancy, Inotropic and intracellular acid-base changes during metabolic acidosis, Am. J. Physiol 228:1060 (1975).PubMedGoogle Scholar
  8. 8.
    J. R. Williamson, B. Safer, T. Rich, S. Schaffer and K. Kobayashi, Effects of acidosis on myocardial contractility and metabolism, Acta Med. Scand. Suppl. 587:95 (1976).PubMedGoogle Scholar
  9. 9.
    P. A. Poole-Wilson and C. A. Langer, Effects of acidosis on mechanical function and Ca2+ exchange in rabbit myocardium, Am. J. Physiol. 236:H525 (1979).PubMedGoogle Scholar
  10. 10.
    R. B. Case, A. Felix, M. Watcher, G. Kryakidis and F. Castellana, Relative effect of CO2 on canine coronary vascular resistance, Circ. Res. 42:410 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Rooke and H. V. Sparks, Arterial CO2, myocardial O2 consumption and coronary blood flow in the dog, Circ. Res. 47/217 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    K. T. Weber and J. S. Janicki, The metabolic demand and oxygen supply of the heart: physiologic and clinical considerations, Am. J. Cardiol. 44:722 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Becker, J. Vinten Johansen, G. D. Buckberg, J. M. Robertson, J. D. Leaf, H. L. Lazar and A. J. Manganaro, Myocardial damage caused by keeping pH 7.40 during systemic deep hypothermia, J. Thorac. Cardiovasc. Surg. 82: 810 (1981).PubMedGoogle Scholar
  14. 14.
    M. C. Blayo, Y. Lecompte and J. J. Pocidalo, Control of acid-base status during hypothermia in man, Respir. Physiol. 42/287 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    J. N. Carter, F. N. White, G. M. Collins and N.A. Halasz, Studies of the ideal [H+] for perfusional preservation, Transplantation 30:409 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    R. L. Clancy and N. C. Gonzalez, Influence of temperature upon inotropic effect of metablolic acidosis in cat papillary muscles, Proc. Soc. Exp. Biol. Med. 145:904 (1974).PubMedGoogle Scholar
  17. 17.
    G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. P. Berthier, J. Cornillault, B. Godard and J. J. Pocidalo, Insitu double-beam NADH laser fluorometry: choice of a reference wave-lenght, Am. J. Physiol. 246:491 (1984).Google Scholar
  18. 18.
    C. R. Valeri, M. Yarnoz, J. J. Vecchione, R. C. Dennis, J. Anastasi, D.A. Valeri, L. E. Pivacek and H. B. Hechtman, Improved oxygen delivery to the myocardium during hypothermia by perfusion with 2,3 DPG-enriched red blood cells, Ann. Thorac. Surg. 30:527 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Sinet
    • 1
  • M. Muffat-Joly
    • 1
  • D. Henzel
    • 1
  • J. J. Pocidalo
    • 1
  1. 1.Institut National de la Santé et de la Recherche Médicale, Unité 13Hôpital Claude BernardParisFrance

Personalised recommendations