The Effect of Peptides on Cerebrovascular Resistance in Cats

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)


It was the aim of the present study to investigate the effect of several naturally occurring peptides and synthetic analogues on cerebral resistance vessels. These peptides appear to be generated and released in the brain from vascular nerve endings or parenchymal cells. Neurotensin, a tridecapeptide, was first isolated from extracts of hypothalamus by Carraway and Leeman (1973) and later also detected in other brain regions such as cortex, thalamus, and pituitary (Bisette et al., 1978; Brown and Miller, 1982). In addition, neurotensin immunoreactive fibres have been detected in cerebral vessels by Chan-Palay (1977).


Opiate Receptor Intestinal Smooth Muscle Bradykinin Receptor Pial Artery Vasogenic Brain Edema 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bisette, G., Manberg, P., Nemeroff, C.B., and Prange, A.J., 1978, Neurotensin, a biologically active peptide, Life Sci., 23: 2173–2182.CrossRefGoogle Scholar
  2. Brown, D.R., and Miller, R.J., 1982, Neurotensin, Brit.Med.Bull., 38: 239–245.PubMedGoogle Scholar
  3. Carraway, R., and Leeman, S.E., 1973, The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami, J.Biol. Chem., 248: 6854–6861.PubMedGoogle Scholar
  4. Chand, N., and Altura, B.M., 1981, Inhibition of endothelial cell-dependent relaxations to acetylcholine and bradykinin by lipoxygenase inhibitors in canine isolated renal arteries, Microcirculation, 1: 211–223.Google Scholar
  5. Chan-Palay, V., 1977, Innervation of cerebral blood vessels by norepinephrine, indoleamine, substance P and neurotensin fibres and the leptomeningeal indoleamine axons: their roles in vasomotor activity and local alterations of brain blood composition, in: “Neurogenic control of the brain circulation,” Owman, Ch., Edvinsson, L., eds., Pergamon Press, Oxford, pp. 39–54.Google Scholar
  6. Cherry, P.D., Furchgott, R.F., Zawadzki, J.V., and Jothianandan, D., 1982, Role of endothelial cells in relaxation of isolated arteries by bradykinin, Proc.Nat.Acad.Sci., 79: 2106–2110.PubMedCrossRefGoogle Scholar
  7. Del Fiacco, M., Paxinos, G., and Cuello, A.C., 1982, Neostriatal en-kephalin-immunoreactive neurones project to the globus palli-dus, Brain Res., 231: 1–17.PubMedCrossRefGoogle Scholar
  8. Gramsch, C., Höllt, V., Mehraein, P., Pasi, A., and Herz, A., 1979, Regional distribution of methionine-enkephalin- and beta-endor-phine-like immunoreactivity in human brain and pituitary, Brain Res., 171: 261–270.PubMedCrossRefGoogle Scholar
  9. Hanko, J.H., and Hardebo, J.E., 1978, Enkephalin-induced dilatation of pial arteries in vitro probably mediated by opiate receptors, Eur.J.Pharmacol., 51: 295–297.PubMedCrossRefGoogle Scholar
  10. Hanko, J.H., Hardebo, J.E., and Owman, Ch., 1981, Effects of various neuropeptides on cerebral blood vessels, J.Cereb.Blood Flow Metab., 1, Suppl.l: S346–S347.Google Scholar
  11. Hardebo, J.E., 1983, Personal communication.Google Scholar
  12. Holm, S., 1979, A simple sequentially rejective multiple test procedure, Scand.J.Statist., 6: 65–70.Google Scholar
  13. Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A., and Morris, H.R., 1975, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature, 258: 577–579.PubMedCrossRefGoogle Scholar
  14. Kapadia, S.E., and de Lanerolle, N.C., 1984, Immunohistochemical and electron microscopic demonstration of vascular innervation in the mammalian brain stem, Brain Res., 292: 33–40.PubMedCrossRefGoogle Scholar
  15. Kitabgi, P., and Freychet, P., 1978, Effects of neurotensin on isolated intestinal smooth muscles, Eur.J.Pharmacol., 50: 349–357.PubMedCrossRefGoogle Scholar
  16. Knoll, J., 1976, Neuronal peptide (enkephalin) receptors in the ear artery of the rabbit, Eur.J.Pharmacol., 39: 403–407.PubMedCrossRefGoogle Scholar
  17. Kuschinsky, W., and Wahl, M., 1979, Perivascular pH and pial arterial diameter during bicuculline seizures in cats, Pflügers Arch., 382: 81–85.PubMedCrossRefGoogle Scholar
  18. Kuschinsky, W., Wahl, M., Bosse, O., and Thurau, K., 1972, Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study, Circ.Res., 31: 240–247.PubMedCrossRefGoogle Scholar
  19. Marceau, F., Knap, M., and Regoli, D., 1981, Pharmacological characterization of the vascular permeability-enhancing effects of ki-nins in the rabbit skin, Can.J.Physiol.Pharmacol., 59: 921–926.PubMedCrossRefGoogle Scholar
  20. Maier-Hauff, K., Baethmann, A.J., Lange, M., Schürer, L., and Unterberg, A., 1984, The kallikrein-kinin system as mediator in vasogenic brain edema. Part 2: Studies on kinin formation in focal and perifocal brain tissue, J.Neurosurg., 61: 97–106.PubMedCrossRefGoogle Scholar
  21. Nyberg, F., and Terenius, L., 1982, Endorphins in human cerebrospinal fluid, Life Sci., 31: 1737–1740.PubMedCrossRefGoogle Scholar
  22. Peroutka, S.J., Moskowitz, M.A., Reinhard, J.F., and Snyder, S.H., 1980, Neurotransmitter receptor binding in bovine cerebral mi-crovessels, Science, 208: 610–613.PubMedCrossRefGoogle Scholar
  23. Regoli, D., and Barabe, J., 1980, Pharmacology of bradykinin and related kinins, Pharmacol.Rev., 32: 1–46.PubMedGoogle Scholar
  24. Rioux, F., Quirion, R., Leblanc, M.A., Regoli, D., and St-Pierre, S., 1980, Possible interactions between neurotensin and prostaglandins in the isolated rat portal vein, Life Sci., 27: 259–267.PubMedCrossRefGoogle Scholar
  25. Scheffé, H., 1953, A method for judging all contrasts in the analysis of variance, Biometrica, 40: 87–104.Google Scholar
  26. Starke, K., Peskar, B.A., Schumacher, K.A., and Taube, H.D., 1977, Bradykinin and postganglionic sympathetic transmission, Naunyn-Schmiedeberg’s Arch.Pharmacol., 299: 23–32.CrossRefGoogle Scholar
  27. Terenius, L., and Wahlström, A., 1975, Search for an endogenous ligand for the opiate receptor, Acta Physiol.Scand., 94: 74–81.PubMedCrossRefGoogle Scholar
  28. Terenius, L., and Wahlström, A., 1978, Physiological and clinical relevance of endorphins, in: “Centrally acting peptides,” Hughes, J., ed., MacMillan, London, pp. 161–178.Google Scholar
  29. Toda, N., 1977, Actions of bradykinin on isolated cerebral and peripheral arteries, Amer.J.Physiol., 232: H267–H274.PubMedGoogle Scholar
  30. Uhl, G.R., Goodman, R.R., Kuhar, M.J., Childers, S.R., and Snyder, S.H., 1979, Immunohistochemical mapping of enkephalin containing cell bodies, fibres and nerve terminals in the brain stem of the rat, Brain Res., 166: 75–94.PubMedCrossRefGoogle Scholar
  31. Unterberg, A., and Baethmann, A.J., 1984, The kallikrein-kinin system as mediator in vasogenic brain edema. Part 1: Cerebral exposure to bradykinin and plasma, J.Neurosurg., 61: 87–96.PubMedCrossRefGoogle Scholar
  32. Unterberg, A., Wahl, M., and Baethmann, A., 1984, Effects of bradykinin on permeability and diameter of pial vessels in vivo, J.Cereb.Blood Flow Metab., (in press).Google Scholar
  33. Wagner, F., and Wahl, M., 1984, The effect of neurotensin on vascular and intestinal smooth muscle, Pflügers Arch., (in press).Google Scholar
  34. Wahl, M., Deetjen, P., Thurau, K., Ingvar, D.H., and Lassen, N.A., 1970, Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface, Pflügers Arch., 316: 152–163.PubMedCrossRefGoogle Scholar
  35. Wahl, M., and Kuschinsky, W., 1979 a, The dilating effect of histamine on pial arteries of cats and its mediation by H2 receptors, Circ.Res., 44: 161–165.PubMedCrossRefGoogle Scholar
  36. Wahl, M., and Kuschinsky, W., 1979 b, Unimportance of perivascular H+ and K+ activities for the adjustment of pial arterial diameter during changes of arterial blood pressure in cats, Pflügers Arch., 382: 203–208.PubMedCrossRefGoogle Scholar
  37. Wahl, M., Young, A.R., Edvinsson, L., and Wagner, F., 1983 a, Effects of bradykinin on pial arteries and arterioles in vitro and in situ, J.Cereb.Blood Flow Metab., 3: 231–237.PubMedCrossRefGoogle Scholar
  38. Wahl, M., Young, A.R., Edvinsson, L., and Wagner, F., 1983 b, Effects of kininase II inhibitors on the vasomotor response to bradykinin of feline intracranial and extracranial arteries in vitro and in situ, J.Cereb.Blood Flow Metab., 3: 339–345.PubMedCrossRefGoogle Scholar
  39. Wahl, M., Unterberg, A., and Baethmann, A., 1983 c, Effects of bradykinin on permeability and diameter of cerebral vessels, in: “The cerebral veins, an experimental and clinical update,” Auer L.M., Loew, F., eds., Springer, Wien, pp. 119–122.Google Scholar
  40. Wahl, M., Unterberg, A., and Baethmann, A., 1984, Intravital fluorescence microscopy for the study of blood-brain barrier function, Int.J.Microcirc.Clin.Exp., (in press).Google Scholar
  41. Whalley, E.T., and Wahl, M., 1983 a, Analysis of bradykinin receptor mediating relaxation of cat cerebral arteries in vivo and in vitro, Naunyn-Schmiedeberg’s Arch.Pharmacol., 323: 66–71.CrossRefGoogle Scholar
  42. Whalley, E.T., and Wahl, M., 1983 b, The effect of kininase II inhibitors on the response of feline cerebral arteries to bradykinin and angiotensin, Pflügers Arch., 398: 175–177.PubMedCrossRefGoogle Scholar
  43. Whalley, E.T., Fritz, H., and Geiger, R., 1983 a, Kinin receptors and angiotensin converting enzyme in rabbits basilar arteries, Naunyn Schmiedeberg’s Arch.Pharmacol., 324: 296–301.CrossRefGoogle Scholar
  44. Whalley, E.T., Wahl, M., and Sampaio, C.A.M., 1983 b, Angiotensinconverting enzyme, bradykinin, angiotensin and cerebral vessel reactivity, Hypertension, 5, Suppl. V: V34–V37.PubMedCrossRefGoogle Scholar
  45. Yau, W.M., Verdun, P.R., and Youther, M.L., 1983, Neurotensin: a modulator of enteric cholinergic neurons in the guinea pig small intestine, Eur.J.Pharmacol., 95: 253–258.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Wahl
    • 1
  1. 1.Department of PhysiologyUniversity of MunichMunich 2Germany

Personalised recommendations