Oxygen Supply and Microcirculation of the Brain Cortex

  • Elfriede Leniger-Follert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)


The actual oxygen supply of the brain is, as in other organs, dependent on the arterial oxygen capacity, the rate of local blood flow, the diffusion conditions within the organ and the oxygen consumption of the tissue. All these parameters may change under different physiological or pathological conditions and thus influence the O2 supply of the brain. In the following minireview I will focus on the following points.


Cerebral Blood Flow Oxygen Supply Mean Arterial Blood Pressure Brain Cortex Severe Hypoglycemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumgärtl, H., and Lübbers, D. W., 1973, Platinum needle electrode for Polarographic measurement of oxygen and hydrogen, in; “Oxygen Supply, Theoretical and Practical Aspects of Oxygen Supply and Microcirculation of Tissue,” M. Kessler, D. F. Bruley, L. C. Clark jr., D. W. Lübbers, I. A. Silver, J. Strauss, eds., Urban & Schwarzenberg, München-Berlin-Wien, pp. 130–136.Google Scholar
  2. Betz, E., and Czornai, M., 1978, Action and interaction of perivascular H+, K+, and Ca++ on pial arteries, Pflügers Arch., 374:67–72.PubMedCrossRefGoogle Scholar
  3. Betz, E., Enzenross, H. G., and Vlahow, V., 1973, Interaction of H+ and Ca++ in the regulation of local pial vascular resistance, Pflügers Arch., 343:79–88.PubMedCrossRefGoogle Scholar
  4. Bruley, D. F., Bicher, H. E., Reneau, D. D., and Knisely, M. H., 1971, Dynamics of tissue oxygen supply during circulatory failure, 6th Europ. Conf. on Microcirculation, Aalborg 1970, Karger, Basel, pp. 193–196.Google Scholar
  5. Cahn, R., and Leniger-Follert, E., 1983, Effect of isovolemic hemodilution on oxygen supply and electrocorticogram in cat brain during focal ischemia and in normal tissue, Int. J. Microcirc: Clin. Exp., 2:297–313.Google Scholar
  6. Clark, L. C. jr., 1956, Monitor and control of blood tissue oxygen tension, Trans. Soc. Art. Int. Organs, 2:41.Google Scholar
  7. Erdmann, W., Kunke, St., and Krell, W., 1973, Tissue pO2 and cell function — an experimental study with multimicroelectrodes in the rat brain, in: “Oxygen Supply, Theoretical and Practical Aspects of Oxygen Supply and Microcirculation of Tissue,” M. Kessler, D. F. Bruley, L. C. Clark jr., D. W. Lübbers, I. A. Silver, J. Strauss, eds., Urban & Schwarzenberg, München-Berlin-Wien, pp. 169–174.Google Scholar
  8. Gronczewski, J., and Leniger-Follert, E., 1984, Relationship between microflow, local tissue pO2 and extracellular activities of potassium and hydrogen ions in the cat brain during intraarterial infusion of ammonium acetate, Adv. Exp. Med. Biol., 169:291–296.PubMedCrossRefGoogle Scholar
  9. Grote, J., Zimmer, K., and Schubert, R., 1981, Effects of severe arterial hypocapnia on regional blood flow regulation, tissue pO2 and metabolism in the brain cortex of cats, Pflügers Arch., 391: 195–199.PubMedCrossRefGoogle Scholar
  10. Grunewald, W., and Sowa, W., 1977, Capillary structures and O2 supply to tissue. An analysis with a digital diffusion model applied to the skeletal muscle. Rev. Physiol. Biochem. Pharmacol., 77:149–209.PubMedCrossRefGoogle Scholar
  11. Harper, A. M., 1966, Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex, J. Neurol. Neurosurg. Psychiat., 29:398–403.PubMedCrossRefGoogle Scholar
  12. Katsaros, B., 1965, Der Effekt der Durchtrennung der Sinusnerven auf die Atmung der narkotisierten Katze bei konstant gehaltenem arteriellen Druck und seine Abhängigkeit vom CO2-Druck, Pflügers Arch., 282:179–185.CrossRefGoogle Scholar
  13. Kessler, M., Höper, J., and Simon, W., 1974, Methodology and application of multiple ion selective surface electrode (pH, pK, pNa, pCa, pCl) for tissue measurements, Fed. Proc., 33: 279.Google Scholar
  14. Kessler, M., 1974, Lebenserhaltende Mechanismen bei Sauerstoffmangel und bei Störungen der Organdurchblutung. Mitteilg. Max-Planck-Ges. 444–463.Google Scholar
  15. Kessler, M., Lübbers, D.W., 1966, Aufbau und Anwendungsmöglichkeit verschiedener pO2-Elektroden, Pflügers Arch., 291:82.Google Scholar
  16. Krogh, A., 1918/1919, The rate of diffusion of gases through animal tissues with some remarks on the coefficient of invasion. J. Physiol., 52:391–408.Google Scholar
  17. Krolicki, L., and Leniger-Follert, E., 1980, Oxygen supply of the brain cortex (rat) during severe hypoglycemia, Pflügers Arch., 387:121–126.PubMedCrossRefGoogle Scholar
  18. Kuschinsky, W., and Wahl, M., 1978, Local chemical and neurogenic regulation of cerebral vascular resistance, Physiol. Rev., 58: 656–689.PubMedGoogle Scholar
  19. Kuschinsky, W., Wahl, M., Bosse, O., and Thurau, K., 1972, Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study, Circ. Res., 31: 240–247.PubMedCrossRefGoogle Scholar
  20. Leniger-Follert, E., 1984, Mechanisms of regulation of cerebral microflow during bicuculline-induced seizures in anaesthetized cats, J. Cereb. Blood Flow Metab., 4:150–165.PubMedCrossRefGoogle Scholar
  21. Leniger-Follert, E., and Danz, C., 1981, The role of extracellular potassium and hydrogen activities in the brain cortex for regulation of cerebral microcirculation in the cat during generalized seizures and specific sensory stimulation, in; “Progress in Enzyme and Ion-Selective Electrodes,” D. W. Lübbers, H. Acker, R. P. Buck, G. Eisenman, M. Kessler and W. Simon, eds., Springer-Verlag, Berlin-Heidelberg-New York, pp. 100–105.CrossRefGoogle Scholar
  22. Leniger-Follert, E., Gronczewski, J., and Danz, C., 1984, Regulation of microflow in the cat brain during insulin induced hypoglycemia, Adv. Exp. Med. Biol., 169:297–303.PubMedCrossRefGoogle Scholar
  23. Leniger-Follert, E., and Hossmann, K.-A., 1979, Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation, Pflügers Arch., 380:85–89.PubMedCrossRefGoogle Scholar
  24. Leniger-Follert, E., and Lübbers, D. W., 1976, Behavior of micro-flow and local pO2 of the brain cortex during and after direct electrical stimulation. A contribution to the problem of metabolic regulation of microcirculation in the brain, Pflügers Arch.,366:39–44.PubMedCrossRefGoogle Scholar
  25. Leniger-Follert, E., Lübbers, D. W., Wrabetz, W., 1975, Regulation of local tissue pO2 of the brain cortex at different arterial 02 pressures, Pflügers Arch., 359:81–95.PubMedCrossRefGoogle Scholar
  26. Lübbers, D. W., 1977, Die Bedeutung des lokalen Gewebesauerstoffdruckes und des pO2-Histogrammes für die Beurteilung der SauerStoffversorgung eines Organes, Prak. Anästhesie. Wiederbelebung und Intensivtherapie, 12:183–193.Google Scholar
  27. Lübbers, D. W., 1981, Grundlagen und Bedeutung der lokalen Sauerstoffdruckmessung und des pO2-Histogramms für die Beurteilung der Sauerstoffversorgung der Organe und des Organismus, in: “Messung des Gewebesauerstoffdruckes bei Patienten,” A. M. Ehrly, ed., Gerhard Witzstrock, Baden-Baden-Köln-New York, pp. 11–21.Google Scholar
  28. Metzger, H., 1973, pO2 histograms of threedimensional systems with homogeneous and inhomogeneous microcirculation — a digital computer study, in: “Oxygen Supply, Theoretical and Practical Aspects of Oxygen Supply and Microcirculation of Tissue,” M. Kessler, D. F. Bruley, L. C. Clark jr., D. W. Lübbers, I. A. Silver, J. Strauss, eds., Urban & Schwarzen-berg, München-Berlin-Wien, pp. 18–24.Google Scholar
  29. Metzger, H., Heuber-Metzger, S., Steinacker, A., and Strüber, J., 1980, Staining pO2 measurement sites in the rat brain cortex and quantitative morphometry of the surrounding capillaries, Pflügers Arch., 388:21–27.PubMedCrossRefGoogle Scholar
  30. Norberg, K., and Siesjö, B. K., 1976, Oxidative metabolism of the cerebral cortex of the rat in severe insulin-induced hypoglycemia, J. Neurochem., 26:345–352.PubMedCrossRefGoogle Scholar
  31. Silver, I. A., 1965, Some observations on the cerebral cortex with an ultramicro, membrane-covered oxygen electrode, Med. Electron. Biol. Engng., 3:377–387.CrossRefGoogle Scholar
  32. Smith, R. H., Guilbeau E. J., and Reneau, D. D., 1977, The oxygen tension field within a discrete volume of cerebral cortex, Microvasc. Res., 13:233–240.PubMedCrossRefGoogle Scholar
  33. Thews, G., 1960, Die Sauerstoffdiffusion im Gehirn, Pflügers Arch., 271:197–226.CrossRefGoogle Scholar
  34. Wahl, M., Deetjen, P., Thurau, K., Ingvar, D. H., and Lassen, N. A., 1970, Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface, Pflügers Arch., 316:152–163.PubMedCrossRefGoogle Scholar
  35. Wahl, M., and Kuschinsky, W., 1979, Unimportance of perivascular H+ and K+ activities for the adjustment of pial artery diameter during changes in arterial blood flow pressure in cats, Pflügers Arch., 382:203–208.PubMedCrossRefGoogle Scholar
  36. Whalen, W. F., Canfield, R., and Nair, P., 1970, Effects of breathing O2 or O2 + CO2 and of the injection of neurohumors on the PO2 of cat cerebral cortex, Stroke, 1:194–200.PubMedCrossRefGoogle Scholar
  37. Whalen, W. F., Riley, J., and Nair, P., 1967, A microelectrode for measuring intracellular PO2, J. Appl. Physiol., 23:798–801.PubMedGoogle Scholar
  38. Wiernsperger, N., Gygax, P., and Meier-Ruge, W., 1978, Changes in cerebrocortical pO2 distribution, rCBF and EEG during hypovolemic shock, Adv. Exp. Med. Biol., 94:605–610.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Elfriede Leniger-Follert
    • 1
  1. 1.Max-Planck-Institut für SystemphysiologieDortmund 1Germany

Personalised recommendations