Influence of Hemoglobin Concentration in Perfusate and in Blood on Fluorescence of Pyridine Nucleotides (NADH and NADPH) of Rat Liver

  • Herbert Rahmer
  • Manfred Kessler
  • Karin Hájek
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 37 A)


Measurements of pyridine nucleotide fluorescence (NADH and NADPH) provide information about changes in intracellular redox state as we know from Chance and other investigators (1,2,3,7,8,9). In vivo measurements are greatly influenced by light absorption of hemoglobin which produces a filter effect in tissue (2,5,6). In order to quantify this effect we used the isolated perfused rat liver as a model. The hemoglobin concentration was changed by addition of washed bovine erythrocytes to the perfusion medium. Our technical equipment enabled us to investigate changes of the fluorescence of pyridine nucleotides and changes of the local hemoglobin concentration and the local oxygenation in tissue by a simultaneous fluorescence and reflectance measurement.


Hemoglobin Concentration Oxygen Transport Isosbestic Point Hemoglobin Content Pyridine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bücher, Th.: The state of DPN system in liver. In: Pyridine Nucleotide Dependent Dehydrogenases. Springer Verlag 1969.Google Scholar
  2. 2.
    Chance, B., Jöbsis, F.: Intracellular oxidation-reduction states in vivo. Science 137, 499 (1962).PubMedCrossRefGoogle Scholar
  3. 3.
    Chance, B., Leyallis, O.: A spectrofluorometer for recording of intracellular oxidation-reduction states, IEE Trans. Biol.Med. Electron. 10, 40–47 (1963).Google Scholar
  4. 4.
    Kessler, M., Olech, K.-H., Schnase, G.: Microscopic photometerGoogle Scholar
  5. for simultaneous measurement of intracellular fluorescenceGoogle Scholar
  6. NADH and FAD) and of local hemoglobin concentration andGoogle Scholar
  7. oxygenation of the tissue. In preparation.Google Scholar
  8. 5.
    Kobayashi, S., Nishiki, K., Kaede, K., Ogata, E.: Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry. J. appl. Physiol. 31, 93 (1971).PubMedGoogle Scholar
  9. 6.
    Kobayashi, S., Kaede, K., Nishiki, K., Ogata, E.: Microfluorometry of oxidation-reduction state of the rat kidney in situ. J. appl. Physiol. 31, 693 (1971).PubMedGoogle Scholar
  10. 7.
    Lubbers, D.W., Kessler, M., Scholz, R., Bücher, Th.: Cytochrome reflection spectra and fluorescence of the isolated perfused hemoglobin free rat liver during a cycle of anoxia.Google Scholar
  11. Bio. Z. 341, 346 (1965)Google Scholar
  12. 8.
    Schnittger, H., Scholz, R., Bücher, Th., Lubbers, D.W.: Comparative fluorometric studies on rat liver in vivo and on isolated, perfused hemoglobin free liver. Biochem. Z. 341, 334 (1963)Google Scholar
  13. 9.
    Scholz, R., Thurman, R., Williamson, J., Chance, B.: Flavine and pyridine nucleotide oxidation-reduction changes in perfused rat liver. J. Biol. Chem. 244, 2317 (1969)PubMedGoogle Scholar
  14. 10.
    Wodick, R.: Neue Auswertverfahren für Reflexionsspektren und spektren inhomogener Farbstoffverteilung dargestellt am Beispiel von Hämoglobinspektren. Inauguraldissertation, Marburg 1971Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • Herbert Rahmer
    • 1
  • Manfred Kessler
    • 1
  • Karin Hájek
    • 1
  1. 1.Max-Planck-Institut für ArbeitsphysiologieDortmundWest Germany

Personalised recommendations