Actions of Hypoxia and Hypercapnia on Single Mammalian Neurons

  • E.-J. Speckmann
  • H. Caspers
  • D. Bingmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 37 A)


The actions of oxygen deficiency on the bioelectrical activity of single neurons have been described in a number of papers (1–7, 9, 12). In these studies rather complex and sometimes even controversial neuronal responses were observed. Since a critical lowering of the pO2 evokes an insufficiency of circulation and consequently an increase of the pCO2, it may be assumed that the complex neuronal reactions are due partly to interactions of hypoxia and hypercapnia. This assumption was tested by intracellular recordings from moto- and interneurons in anesthetized and artificially ventilated rats and cats. In the experiments at first the isolated effects of hypoxia and hypercapnia were examined under continuous control of pO2 and pCO2 in blood and tissue. Subsequently the interactions of both effects were studied.


Intracellular Recording Discharge Frequency Bioelectrical Activity Critical Lowering Complex Neuronal Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    CASPERS, H. und SPECKMANN, E.-J. Gleichspannungsverschiebungen an der Hirnrinde bei Asphyxie. Ärztl.Forsch., 1971, 25: 241–255PubMedGoogle Scholar
  2. 2).
    CASPERS, H. and SPECKMANN, E.-J. Cerebral p02, pCO2 and pH: Changes During Convulsive Activity and their Significance for Spontaneous Arrest of Seizures. Epilepsia, 1972, 13: 699–725.PubMedCrossRefGoogle Scholar
  3. 3).
    COLLEWIJN, H. and VAN HARREVELD, A. Intracellular recording from cat spinal motoneurons during acute asphyxia. J.Physiol. (Lond.), 1966, 185: 1–14.Google Scholar
  4. 4).
    CREUTZFELDT, O., KASAMATSU, A. und VAZ-FERREIRA, A. Aktivitätsänderungen einzelner corticaler Neurone im akuten Sauerstoffmangel und ihre Beziehungen zum EEG bei Katzen. Pflügers Arch.ges. Physiol., 1957, 263: 647–667.CrossRefGoogle Scholar
  5. 5).
    ECCLES, R.M., LOYNING, Y. and OSHIMA, T. Effects of hypoxia on the monosynantic reflex pathway in the cat spinal cord. J.Neurophysiol., 1966, 29: 315–332.PubMedGoogle Scholar
  6. 6).
    GLÖTZNER, F. Intracelluläre Potentiale, EEG und corticale Gleichspannung an der sensomotorischen Rinde der Katze bei akuter Hypoxie. Arch.Psychiat.Nervenkr., 1967, 210, 274–296.PubMedCrossRefGoogle Scholar
  7. 7).
    KOLMODIN, G.M. and SKOGLUND, C.R. Influence of Asphyxia on Membrane Potential Level and Action Potentials of Spinal Moto-and Interneurons. Acta physiol.scand., 1959, 45: 1–18.PubMedCrossRefGoogle Scholar
  8. 8).
    KRNJEVIC, K., RANDIC, M. and SIESJÖ, B.K. Cortical CO2 tension and neuronal excitability. J.Physiol., 1965, 176: 105–122.PubMedGoogle Scholar
  9. 9).
    NIECHAJ, A. and VAN HARREVELD, A. Intracellular recording from cats spinal interneurons during acute asphyxiation. Brain Res., 1968, 8: 54–64.PubMedCrossRefGoogle Scholar
  10. 10).
    PAPAJEWSKI, W., KLEE, M.K. and WAGNER, A. The action of raised CO2 pressure on the excitability of spinal motoneurons. Electroenceph.clin.Neurophysiol., 1969, 27: 618.PubMedGoogle Scholar
  11. 11).
    SPECKMANN, E.-J. und CASPERS, H. Verschiebungen des corticalen Bestandpotentials bei Veränderungen der Ventilationsgröße. Pflügers Arch., 1969, 310: 235–250.PubMedCrossRefGoogle Scholar
  12. 12).
    SPECKMANN, E.-J., CASPERS, H. und SOKOLOV, W. Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pflügers Arch., 1970, 319: 122–138.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • E.-J. Speckmann
    • 1
  • H. Caspers
    • 1
  • D. Bingmann
    • 1
  1. 1.Institute of PhysiologyUniversity of MünsterWestf.Fed. Rep. Germany

Personalised recommendations