Analysis of 2,3 Diphosphoglycerate-Mediated, Hemoglobin-Facilitated Oxygen Transport in Terms of the Adair Reaction Mechanism

  • Jerry H. Meldon
  • Kenneth A. Smith
  • Clark K. Colton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 37 A)


Since the initial observations (1,2) of the effect of 2,3 diphosphoglycerate (2,3 DPG) upon the oxygen affinity of hemoglobin, considerable interest has focussed on the importance in the gas exchange process (3,4) of this species and other organic phosphates. This paper summarizes a theoretical analysis of the influence of 2,3 DPG on O2 transport in hemoglobin solutions. The physical system analyzed is the same as that used in previous treatments of hemoglobin-facilitated oxygen transfer (5). A thin film of solution separates two phases containing differing partial pressures of oxygen (PO2). Hemoglobin, although mobile, is constrained to remain within the liquid film. As a result of 02-Hb interactions, the diffusion of O2 from the high to the low pO2 boundary induces a parallel diffusion of oxyhemoglobin. If 2,3 DPG is present, there are gradients in the concentrations of free and of hemoglobin-bound 2,3 DPG as a result of the gradients in oxy- and deoxyhemoglobin and preferential binding of 2,3 DPG to the latter (6). In this study, the concentrations of free and bound 2,3 DPG were taken to be constant across the film.


Oxygen Transport Organic Phosphate Downstream Boundary Hemoglobin Solution Parallel Diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benesch, R. and Benesch, R.E. (1967) Biochem. Biophys. Res. Commun. 26, 162.PubMedCrossRefGoogle Scholar
  2. 2.
    Chanutin, A. and Curnish, R.R. (1967) Arch. Biochem. Biophys. 121, 96.CrossRefGoogle Scholar
  3. 3.
    Forster, R.E. (1972) in Benzon Symp. IV, Rorth, M. and Astrup, P., eds., Munskgaard, Copenhagen, p. 518.Google Scholar
  4. 4.
    Rossi-Bernardi, L., et al. (1972) in Benzon Symp. IV, Rorth, M. and Astrup, P., eds., Munskgaard, Copenhagen, p. 224.Google Scholar
  5. 5.
    Kreuzer, F. (1970) Resp. Physiol. 9, 1.CrossRefGoogle Scholar
  6. 6.
    Perutz, M.F. (1970) Nature, 226, 726.CrossRefGoogle Scholar
  7. 7.
    Olander, D.R. (1960) AIChE J. 6, 233.CrossRefGoogle Scholar
  8. 8.
    Kreuzer, F. and Hoofd, L.J.C. (1972) Resp. Physiol. 15, 104.CrossRefGoogle Scholar
  9. 9.
    Kutchai, J., Jacquez, J.A., and Mather, F.J. (1970) Biophys. J. 10, 38.PubMedCrossRefGoogle Scholar
  10. 10.
    Adair, G.S. (1925) J. Biol. Chem. 63, 529.Google Scholar
  11. 11.
    Tyuma, I., Imai, K., and Schimizu, K. (1972) in Benzon Symp. IV, Rorth, M. and Astrup, P., eds., Munskgaard, Copenhagen, p. 139.Google Scholar
  12. 12.
    Gibson, Q.H. (1970) J. Biol. Chem. 245, 3285.Google Scholar
  13. 13.
    Meldon, J.H. (1973) Sc.D. Thesis, MIT, Cambridge.Google Scholar
  14. 14.
    Smith, K.A., Meldon, J.H., and Colton, C.K. (1973) AIChE J. 19, 102.CrossRefGoogle Scholar
  15. 15.
    Gibson, Q.H. (1973) Proc. Nat. Acad. Sci. 70, 1.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • Jerry H. Meldon
    • 1
    • 2
  • Kenneth A. Smith
    • 1
    • 2
  • Clark K. Colton
    • 1
    • 2
  1. 1.Department of Chemical EngineeringUSA
  2. 2.Institute of TechnologyCambridgeUSA

Personalised recommendations