Dual Wavelength Micro-Oximeter of Hamster Whole Blood in Vitro

  • Herbert J. Berman
  • Stuart J. Segall
  • Robert L. Fuhro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 37 A)


Difficulties of measuring oxygen saturation of circulating whole blood in microvessels have greatly limited past efforts to obtain such data. These difficulties are related to the small diameters of the vessels, the small, continuously changing volume of blood flowing in them, variations in the state of red cell orientation and suspension during flow, and numerous optical problems. In order to define some of the problems, establish specific relationships that may exist among the variables, and determine the sensitivity and reliability of our equipment and approach, we first studied certain important variables governing the measurement of oxygen saturation by transmitted light in small samples of whole blood in vitro where conditions can be more readily and completely controlled than in vivo. The studies were first done with static blood in thin layer cuvettes and then with blood in flow in small diameter polyethylene tubes.


Oxygen Saturation Shear Rate Light Path Erythrocyte Aggregation Single Blood Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman, H.J. and R.L. Fuhro. Velocity Profiles in Small Blood Vessels. Fed. Proc. 26: 496 (1967).Google Scholar
  2. 2.
    Knisely, M.H. Intravascular Erythrocyte Aggregation. Handbook of Physiology (W.F. Hamilton, P. Dow, ed.) Sect. 2, Circ. III: 2249–2292 (1965).Google Scholar
  3. 3.
    Kramer, K. Fortlaufende Registrietung der Sauerstoffsatigung im Blute am uneroffneten Blutgefassen. Klin. Wchnschr. 13: 379–380 (1934).CrossRefGoogle Scholar
  4. 4.
    Kramer, K. Ein Verfahren zur fortlaufenden Messung des Sauerstoffgehalten in stromenden Blute an uneroffneten Gefassen. Ztschr. Biol. 96: 61–75 (1935).Google Scholar
  5. 5.
    Matthes, K. Uber den Einfluss der Atmung auf die Sauerstoffsatigung des Arterienblutes. Arch. Exper. Path. u. Pharmakol. 179: 698–711 (1935).CrossRefGoogle Scholar
  6. 6.
    Matthes, K. and F. Gross. Untersuchungen uber die Absorption von rotem und ultrarotem Licht durch kohlenoxygegesattigtes, sauerstoffgesatigtes, und reduziertes Blute. Arch. Exper. Path. u. Pharmakol. 191: 369–380 (1939).Google Scholar
  7. 7.
    Nilsson, N.J. Oximetry. Physiol. Rev. 40: 1–26 (1960).Google Scholar
  8. 8.
    Ofstad, J. The Measurement of Oxygen Saturation and Hemoglobin Concentration by Photometry of Whole Blood. Chr. Michelsens Institute # XXVIII, 3. 1–175 (1965).Google Scholar
  9. 9.
    Vierordt, K. Physiologische Spektralanalysin, VIII. Das Hamoglobinspektrum am lebendem Menschem. Ztschr. Biol. 11: 195–197 (1875).Google Scholar
  10. 10.
    Vierordt, K. Physiologische Spektralanalysin, IX. Die Sauerstoffzchrung den lebenden Gewebe. Ztschr. Biol. 14: 422–448 (1878).Google Scholar
  11. 11.
    Wood, E.H. Oximetry. In Medical Physics, ed. O. Glasser. The Yearbook Publishers, Inc., Chicago. Vol. 2: 664–680 (1950).Google Scholar
  12. 12.
    Wood, E.H. Oximetry. In Medical Physics, ed. O. Glasser. The Yearbook Publishers, Inc., Chicago. Vol. 3: 416–445 (1960).Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • Herbert J. Berman
    • 1
  • Stuart J. Segall
    • 1
  • Robert L. Fuhro
    • 1
  1. 1.Department of BiologyBoston UniversityBostonUSA

Personalised recommendations