Incorporation of Purine Bases by Intact Red Blood Cells

  • C. H. M. M. de Bruyn
  • T. L. Oei
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 76B)


Mature human erythrocytes do not possess the ability to perform purine synthesis de novo (1–3). These cells meet their requirements for purine nucleotides by re-utilisation of preformed bases that are derived from the diet and those released from other tissues into the blood circulation (1,4).


Purine Base Phosphoribosyl Transferase Normal Erythrocyte Nucleotide Formation Phosphoribosyl Transferase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lowy B.A., Ramot B. and London I.M. (1960). J.Biol.Chem. 235, 2920–2924.PubMedGoogle Scholar
  2. 2.
    Lowy B.A., Williams M.K. and London I.M. (1962). J.Biol.Chem. 237, 1622–1626.PubMedGoogle Scholar
  3. 3.
    Fontenelle L.J. and Henderson J.F. (1969). Biochim. Biophys.Acta 177, 175–177.PubMedCrossRefGoogle Scholar
  4. 4.
    Henderson J.F. and Le Page G.A. (1959). J.Biol.Chem. 234, 3219–3224.PubMedGoogle Scholar
  5. 5.
    Whittam R. (1960). J.Physiol.London 154, 614–623.PubMedGoogle Scholar
  6. 6.
    Lassen U.V. (1967).Biochim.Biophys.Acta 135, 146–154.PubMedCrossRefGoogle Scholar
  7. 7.
    Sixma J.J., Holmsen H. and Trieschnigg A.C.M. (1973), Biochim. Biophys. Acta 298, 460–468.PubMedCrossRefGoogle Scholar
  8. 8.
    Hochstadt-Ozer J. and Stadtman E.R. (1971). J.Biol.Chem. 246, 5304–5320.PubMedGoogle Scholar
  9. 9.
    de Bruyn C.H.M.M. and Oei T.L. (1974). In: Purine Metabolism in Man (Sperling O., de Vries A. and Wijngaarden J.B. Eds.) pp.223–227. Plenum Press, New York.Google Scholar
  10. 10.
    Seegmiller J.E., Rosenbloom F.M. and Kelley W.N. (1967). Science 155, 1682–1684.PubMedCrossRefGoogle Scholar
  11. 11.
    Greene M.L., Boyle J.A. and Seegmiller J.E. (1970). Science 167, 887–889.PubMedCrossRefGoogle Scholar
  12. 12.
    Hershko A., Razin A., Shoshani T. and Mager J. (1967). Biochim.Biophys. Acta 149, 59–7 3.PubMedGoogle Scholar
  13. 13.
    de Bruyn C.H.M.M. and Oei T.L. (1976). These Proceedings.Google Scholar
  14. 14.
    Henderson J.F. and Le Page (1959). Cancer Res. 19, 67–71.PubMedGoogle Scholar
  15. 15.
    Hawkins R.A. and Berlin R.D. (1969). Biochim. Biophys. Acta 173, 324–337.PubMedCrossRefGoogle Scholar
  16. 16.
    Kundig W., Kundig F., Anderson B. and Roseman S. (1966). J.Biol.Chem. 241, 3243–3246.PubMedGoogle Scholar
  17. 17.
    Kaback H.R. (1968). J.Biol.Chem. 243, 3711–3724.PubMedGoogle Scholar
  18. 18.
    Berlin R.D. and Stadtman R.D. (1966). J.Biol.Chem 241, 2679–2686.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • C. H. M. M. de Bruyn
    • 1
  • T. L. Oei
    • 1
  1. 1.Dept. Hum. GeneticsUniversity of NijmegenThe Netherlands

Personalised recommendations